
IDC RE-ENGINEERING REPORT
SAND2016-WXYZ
Unlimited Release
December 2016

IDC Re-Engineering Phase 2
Architecture Document
Version 1.7

John Burns

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

SAND2017-0145R



issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors, or their employees, make
any warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.



SAND2016-WXYZ
Unlimited Release
December, 2016

IDC Re-Engineering Phase 2 Architecture

Document

J. Burns
Next Generation Monitoring Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0401

Abstract

This document contains a description of the system architecture for the IDC Re-
Engineering Phase 2 project.



TABLE OF CONTENTS ERROR! REFERENCE SOURCE NOT FOUND.

TABLE OF CONTENTS

Table of Contents 4

Table of Figures 7

1 Introduction 8

1.1 The US NDC System 8

1.2 US NDC Modernization Project  8

1.3 The IDC System 8

1.4 IDC Re-engineering  8

1.5 The Architecture Document 9

2 Documents 9

3 Scope 10

3.1 Mission  10

3.2 Deployment Concept 10

3.3 Modernization Principles  10

3.3.1 Re-Architect System Using Model-Based Engineering 11

3.3.2 Enhanced Mission Capabilities 11

3.3.3 Extensibility  11

3.3.4 Scalability  11

3.3.5 Platform Independence 12

3.3.6 Integrated Testing 12

3.3.7 Modernize Development Process and Environment 12

3.4 Key Features 12

3.4.1 Common Object Interface 13

3.4.2 Provenance 13

3.4.3 Undo-Redo 14

3.4.4 Replay 15

Error! Reference source not found.7 Page 4 of 83



TABLE OF CONTENTS ERROR! REFERENCE SOURCE NOT FOUND.

3.4.4.1 Waveform Replay 15

3.4.4.2 Analyst Action Replay 16

3.4.5 Algorithm Extensibility 16

3.4.6 Remote User Interface 17

3.4.7 Geographic Information Systems (GIS) 17

3.5 Assumptions  17

4 Architectural Representation  17

4.1 Use Case View 19

4.2 Logical View 21

4.2.1 Domains 22

4.2.2 Analysis Classes  24

4.2.3 Types of Analysis Classes  24

4.2.4 Control-Based Architecture 26

4.2.5 Use Case Realizations  28

4.2.6 Mechanisms  28

4.2.6.1 System Control Mechanism 28

4.2.6.2 Processing Sequence Control Mechanism  29

4.2.6.3 Object Storage and Distribution Mechanism  30

4.2.6.4 Inter-Process Communication  32

4.2.7 Patterns 32

4.2.7.1 Data Access 32

4.2.7.2 Processing Context 33

4.2.7.3 Analysis Modeling for User Interface 34

4.2.7.4 Algorithms for Automatic and Interactive Processing 35

4.2.7.5 Event Analysis Classes 45

4.3 Implementation View 47

4.3.1 Layers 48

4.3.2 Frameworks 50

4.3.3 Executable Architecture Prototyping Goals 50

Error! Reference source not found.7 Page 5 of 83



TABLE OF CONTENTS ERROR! REFERENCE SOURCE NOT FOUND.

4.3.4 Executable Architecture Prototype Elements 52

4.3.4.1 Inter-process Communication Implementation  52

4.3.4.2 OSD and Data Model Implementation 53

4.3.4.3 Processing Sequences 59

4.3.4.4 User Interface Frameworks 61

4.3.4.5 Undo - Redo Implementation 66

4.3.4.6 Provenance Implementation 67

4.4 Process View 70

4.4.1 Use of Multi-Threading 71

4.4.2 Process View Mappings 71

4.5 Deployment View 72

4.5.1 Deployment Considerations 72

4.5.2 Subsystems 72

4.5.3 Device and Network Interfaces 75

4.5.4 Deployment View Mapping  75

4.5.5 Procurement Considerations  75

4.5.6 Configuration Management 75

5 Appendix A. Specifications 76

6 Appendix B. BPMN For Processing Sequence Control  78

7 Appendix C. Axon Framework Performance Testing Error! Bookmark not

defined.

Error! Reference source not found.7 Page 6 of 83



TABLE OF FIGURES ERROR! REFERENCE SOURCE NOT FOUND.

TABLE OF FIGURES

Figure 4-1. OSD Components  31

Figure 4-2. Relationship between Control Class and Plugin Class 36

Figure 4-3. Plugin Initialization  37

Figure 4-4. Plugin Invocation in Automatic Processing 38

Figure 4-5. Plugin Invocation in Interactive Processing 40

Figure 4-6. Event Analysis Classes 45

Figure 4-7. Event Hierarchy 46

Figure 4-8. Implementation View Layers 48

Figure 4-9. Implementation View Axon framework event sourcing prototype 69

Figure 4-10. Deployment View 74

Figure 6-1. Example BPMN 2.0 Visual Modeling Notation 79

Figure 6-2. Example BPMN 2.0 XML Notation 80

Figure 6-3. Service-Based Processing Sequence Execution  81

Error! Reference source not found.7 Page 7 of 83



INTRODUCTION ERROR! REFERENCE SOURCE NOT FOUND.

1 INTRODUCTION

1.1 The US NDC System

The Air Force Technical Applications Center (AFTAC) operates the US National
Data Center (US NDC) to support the US government nuclear test treaty
monitoring mission. The US NDC system integrates, processes, and analyzes data
in order to detect, locate, identify, and report nuclear events. It also collects and
forwards unprocessed data to US researchers.

1.2 US NDC Modernization Project

The current US NDC system meets mission requirements, but is difficult and
expensive to maintain and enhance. The system and its uses have evolved
considerably since its initial design. The U.S. government has initiated a project
to modernize the current system - the US NDC Modernization project - in order
to address these shortcomings, and to enable continued mission support into the
future. The primary purpose of this project is to update the system architecture
and software, applying modern processes, software design principles and
technologies. Sandia National Laboratories (SNL) has been contracted to execute
initial work on the project.

1.3 The IDC System

The International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban
Treaty Organization (CTBTO) applies, on a routine basis, automatic processing
methods and interactive analysis to raw International Monitoring System (IMS)
seismic, hydroacoustic, infrasonic, and radionuclide data in order to produce,
archive, and distribute standard IDC products on behalf of all States Parties. The
routine processing includes analysis of events with the objective of screening out
events considered to be consistent with natural phenomena or non-nuclear,
man-made phenomena.

1.4 IDC Re-engineering

The current IDC System was designed in the early 1990s, and needs to be
redesigned to be consistent with modern practices. The goal of the IDC Re-
engineering Phase 2 project is to develop an architecture for a modernized
version of the IDC System. The scope of the project is limited to seismic,
hydroacoustic, and infrasonic except for product distribution, which applies to
all four technologies.

Error! Reference source not found.7 Page 8 of 83



DOCUMENTS ERROR! REFERENCE SOURCE NOT FOUND.

1.5 The Architecture Document

The purpose of this document is to describe the analysis and design
methodology, overall software structure, common architectural patterns, core
system mechanisms, and design rationale for a common system to support the
IDC Re-engineering Project and the US NDC Modernization Project. In the
remainder of the document the term "System" refers to this common system.
The Architecture Document is one of the primary artifacts created and
maintained by the architects; it serves as a communication medium between the
architecture team and the implementation teams.

2 DOCUMENTS

Table 2-1. Documents

Author/Document No. Title Rev./Date

CTBTO
IDC Re-Engineering Phase 2 System Requirements
Document, V1.4

Jan 2017

IDC-RP2-SSD-V1.5
IDC Re-Engineering Phase 2 System Specification
Document

Jan 2017

—END OF TABLE—

Error! Reference source not found.7 Page 9 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.

3 SCOPE

The Architecture Document captures the general principles used throughout the
design of the system and serves as a guide for the further development of the
system. It is not meant to be a complete design document. To keep it short and
accessible, and to avoid too much redundancy with other documents, this
Architecture Document is intentionally limited to a high level of abstraction.

The Architecture Document evolves during the design of the system and
continuously captures new major design decisions made regarding the system.
In the context of an iterative development process, there is one version of the
Architecture Document per development iteration.

The terminology and graphical notation used in this document are derived from
the Unified Modeling Language (UML).

3.1 Mission

The mission of the System is to monitor compliance with nuclear test treaties.
This mission requires the System to detect, locate, evaluate, store, and report
natural and man-made events. The System uses several different monitoring
techniques to perform this mission, each designed to monitor a specific physical
domain (e.g., atmosphere, underground, underwater) for events.

3.2 Deployment Concept

The System is designed to be operational 24 hours per day, 7 days per week
(24x7). The System can be deployed at multiple, redundant fixed sites as well as
limited functionality deployed on stand-alone, portable systems.

3.3 Modernization Principles

Modernization is necessary to maintain current mission capability, reduce the
cost of software maintenance, and provide the ability to enhance the system into
the future. The following principles support achieving the goals of the
modernization program:

• Re-architect System using Model-Based Engineering

• Enhanced Mission Capabilities

• Extensibility

• Scalability

• Platform Independence

• Integrated Testing

Error! Reference source not found.7 Page 10 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
• Modernize Development Process and Environment

3.3.1 Re-Architect System Using Model-Based Engineering

Model-based engineering is a methodology that focuses on creating and
maintaining a set of models that describe different aspects of the design of the
system. During the design and development process the models provide an
abstraction to facilitate discussion of significant system features. Models
provide a means of capturing design decisions and rationale. Additionally,
models provide a basis for on-going support and enhancement of the system.
Model-based engineering is a key to most modern software lifecycle processes.

3.3.2 Enhanced Mission Capabilities

One of the primary objectives of this effort is to enhance existing data
acquisition, event detection, data distribution, and data retention capabilities to
meet current and future treaty monitoring needs as specified in the System
Requirements Documents (SRDs). The design of the modernized system
integrates improved seismic, hydroacoustic and infrasonic propagation models
(velocity, attenuation, etc.) to improve association, location, magnitude
estimation and event screening or identification. Another area of focus is
exploiting historic data captured by the System to improve automated system
performance. The System captures detailed histories of analyst interactions
with the system to support refining the system and improving diagnostic
capabilities.

3.3.3 Extensibility

The System is designed to support continued expansion and refinement of the
mission requirements. The system software is based on open standards and
leverages software trends supporting extensibility. The system design facilitates
integration of new tools and models to permit continued evolution and
improvement of the system. Algorithms and models are key areas of
improvement for the system so the design will describe interfaces and loose
coupling of components to permit addition or substitution of these components.
The system will also allow system maintainers to modify processing sequences
and parameters to permit tuning system performance without extensive
redesign and recoding. Another area of focus for the design is operator
customization. The system will use commercial off-the-shelf (COTS), open-
source software and user interface frameworks to permit users to tailor their
displays to their work preferences so users can be efficient.

3.3.4 Scalability

The System is scalable to permit growth of the System to support increasing
requirements in number of stations, in the amount of historical data supporting

Error! Reference source not found.7 Page 11 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
operational processing, in the number or complexity of processing algorithms.
Scalability considerations in the architecture facilitate evolution of the System by
providing a design that can easily migrate to additional processing capability,
increased network throughput or expanded memory. Another aspect of
scalability is the incorporation of new algorithms based on "Big Data" analysis
methods. "Big Data" is a term for data sets that are so large or complex that
traditional data processing applications are inadequate to deal with them. The
current architecture concept for the Modernized System is a hybrid solution
incorporating both a 'Big Data' platform focused on research support as well as a
traditional real-time processing architecture. The current architecture focus is
on developing traditional real-time processing architecture. As "Big Data"
analysis methods are researched and developed for operations these methods
would be implemented in parallel to the real-time processing.

3.3.5 Platform Independence

To facilitate continued system improvement and to avoid vendor-lock the
modernized system will emphasize open-source operating systems and standard
frameworks.

3.3.6 Integrated Testing

A fundamental aspect of verifying the System will be the ability to reproduce a
set of inputs to the system and capture results of processing that data. The
System will capture raw input data and provide the capability to replay the data
through the System. The System will capture provenance information about
system performance, processing parameters and intermediate results to
facilitate analysis and debugging.

3.3.7 Modernize Development Process and Environment

A major objective of this effort is to make use of modern software design and
development practices to re-architect the System's legacy source code/software
baseline that has evolved over the past several years. This effort shall include
recoding the software baseline to take advantage of modern object-oriented
software languages and 64-bit multi-core central processing unit (CPU)
architectures. The architecture design will utilize software modeling tools and
processes to communicate, review and maintain the architectural design of the
modernized system. Common tool sets at geographically distributed
development sites will facilitate a shared understanding and implementation of
the architecture.

3.4 Key Features

The System supports these new key features to enhance effectiveness and
usability: Common Object Interface (COI), provenance, undo-redo, replay,

Error! Reference source not found.7 Page 12 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
algorithm extensibility, remote user interface, and Geographic Information
Systems (GIS).

3.4.1 Common Object Interface

The Common Object Interface (COI) is a definition of the data persisted on the
system. The definition is distinct from the actual format of the stored data to
permit the storage format to be optimized without affecting the application
software. Persistence of stored information on the system is described in 4.2.6.3
Object Storage and Distribution Mechanism. The Data Model encompasses the
detailed design of the Entity classes in the System including class attributes and
associations. The COI is the interface specification defining how Entity classes
are accessed in the System.

3.4.2 Provenance

Provenance, as it relates to the US NDC System, encompasses preserving a
complete history of the process of forming and refining events. Provenance
includes identifying the sensor data used to create an event, the signal
processing operations performed on the input signals, algorithms used to form
the event, personnel analyzing the event data and interim event solutions.
Provenance facilitates post analysis of each event to tune processing algorithms,
to understand analyst decisions, and ultimately to recreate the event analysis
results.

The architecture captures provenance information in several ways. Provenance
information records when Entity classes are created, for example; when a
particular instance of waveform data was available. The provenance of events is
captured by creating a series of Event Hypotheses that describe versions of the
event as the solution evolves over time. Similarly, versions of signal detections
are captured as Signal Detection Hypotheses. Relationships between Entity
classes such as associations between Event Hypotheses and Signal Detection
Hypotheses are stored with a related time range. This method allows analysis of
how Entity classes were related as analysis progressed. Provenance includes
capture of parameters used including whether the default settings for a
particular calculation were used or whether the values were overridden by an
analyst. Provenance includes records of which Entity classes (e.g. Event, Event
Hypothesis, Waveform, etc.) exist in the System, when those Entity classes are
created, which user or process created those Entity classes, which prior Entity
classes were used to derive the new Entity classes, and timing information
indicating when Entity classes were created and when processing affecting those
Entity classes executed.

The architectural approach to capturing provenance is to develop new
provenance Entity classes, associate those provenance objects to the appropriate
Entities, and store the provenance information in existing data stores. This

Error! Reference source not found.7 Page 13 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
approach groups the provenance information directly with the Entity classes. A
limitation of this approach is the provenance information needs to be defined
beforehand. If additional data is needed to analyze a problem it is not available
until the software is updated since the necessary data was not collected when
the problem occurred. Additional provenance information beyond what is
represented in the provenance Entity classes will be captured in System logs.
Log analysis can then be used, if necessary, to determine in more detail than is
available in the provenance Entities why the System behaved in a particular
manner, why certain results were created, or why certain results were not
created.

3.4.3 Undo-Redo

A required feature of the System is the ability for Analysts to undo or redo
commands during an analysis session. The intent of undo and redo is to permit
the Analyst to revert back to a previous state to recover from an incorrect
selection quickly. The Analyst also has the option of saving multiple different
Event Hypotheses for an Event to explore alternate solutions for an Event.
Therefore undo-redo is intended to cover reverting back a limited number of
analysis steps for a single Event.

The System maintains a buffer of Analyst-entered commands. The Analyst may
select to step backward or forward through the list of commands that the
Analyst has entered and the System returns the Event currently being analyzed
to the state associated with the selected command. This requires the System to
undo or redo both the Analyst entered commands as well as any automatic
processing initiated by the System in response to the Analyst's commands.
Signal detection modifications during an Event's analysis are also undo-able.
The context of the undo-redo actions is a single Event. If the Analyst works
multiple Events concurrently then an undo-redo stack is created for each Event.
The Event's undo-redo stack is cleared when the current Event Hypothesis for an
Event is saved. Analysts have the capability to save multiple Event Hypotheses
of an Event during an analysis session to capture key points in the analysis.
Analysts may open saved copies of Events to review prior states or to continue
analysis beginning from the prior saved state. If no Event is being analyzed, for
example during a waveform scan; then Signal Detection modifications are saved
in a separate stack. If the Analyst is scanning waveforms and Signal Detections
the stack is cleared when the scanning activity is completed.

Undo-able actions are defined as actions that cause significant state changes in
Event Hypotheses or Signal Detections. Actions such as waveform filtering
changes are not inherently undo-able because the filter change does not directly
change the Event Hypothesis or Signal Detections and the previous filter state is
easily obtained by applying a previous filter. However, any waveform filter
changes are undone to a previous state to be consistent with the previous state

Error! Reference source not found.7 Page 14 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
of the Event if the corresponding Event is undone. Analyst actions that are not
undo-able are not shown on the undo-redo stack.

Undo and redo requires that the intermittent states of Events and Signal
Detections are either stored or recoverable. The states are directly associated
with the undo-able steps. A direct approach to implement this feature is to
transiently save a version of the Event and associated Signal Detections at every
undo-able step. To undo or redo an action the System reverts to previous Event
and Signal Detection states associated with the step.

3.4.4 Replay

The System requires two different modes of replay. The first mode is the
capability to capture waveform data and replay the data through the system to
support algorithm development and testing. The second mode is the capability
to replay Analyst actions to recreate software issues and to support regression
testing. Establishing a baseline configuration is essential for both methods of
replay. Replay of waveform data depends on configuring the System under test
with the identical station and channel configuration as the configuration on the
System where the waveform data was captured. To replay Analyst actions the
configuration of the System under test must also match the System where the
Analyst actions were captured. Configuration entails many diverse aspects of
the system and the method for collecting and transferring this information to the
System under test will require significant development effort. The following
descriptions assume the required configuration is installed on the system under
test.

3.4.4.1 Waveform Replay

Waveform replay reproduces the time sequence of data arrival at the system.
Waveform replay supports re-creation of error conditions, testing error fixes or
testing of new capabilities under known conditions. Waveform replay can
recreate the situation where incomplete or corrupted data segments are
corrected by later arriving data segments. Waveform replay also enables
examination of automatic processing of late arriving data after events have been
analyzed.

Waveform replay can be implemented by injecting that data into the system
through a test injection interface to emulate the external interfaces. A copy of all
data received is re-sent to the system at the appropriate time. This approach
requires saving the input data stream, copying the stream to the test injection
interface, and sending the input stream to the remainder of the system.

An alternate approach records the reception time for each segment of data as the
segments are stored. Then the test data injection process uses the reception
times to forward data to the remainder of the system at the appropriate time to

Error! Reference source not found.7 Page 15 of 83



SCOPE ERROR! REFERENCE SOURCE NOT FOUND.
emulate processing the data as it was originally received. This approach
requires the time on the system under test to be consistent with the time of the
waveform data. An advantage of this approach is the waveform replay does not
rely on alternate external interfaces and all received data will potentially be
available for replay without transferring the data to the test data injection
process. However, because the test replay is embedded in the system,
separation of test and operational data will need to be enforced procedurally
and/or through separation of test and operational results.

The most critical timing sequence to emulate for evaluating system performance
is the processing sequence of waveform data when it arrives at the Data
Processing partition. Therefore, waveform replay will be designed to inject data
to the Data Processing partition at the time and time sequence of the original
data. Additionally, the System will provide the capability to simulate operator
load on the system while the waveform data is being replayed.

There are some inherent limitations in reproducing an identical environment
during testing even with the replay capability. Small timing differences of data
availability during testing because of varied system loads or test platform
configuration may affect the test results. Also, it is difficult to reproduce the
entire state of the system, especially where algorithms use historic data in
analyzing current inputs. In spite of these limitations, the waveform replay
capability will greatly expand the ability to test the system.

3.4.4.2 Analyst Action Replay

Analyst action replay allows replication of System response to user interaction
with the system to allow more detailed error analysis. The replay capability
requires that the set of Analyst actions for one Analyst has been captured and
transferred to the System under test. The set of data under analysis must also be
replicated to the test System with identical data element identifiers. The data
element identifiers must match to ensure that replayed Analyst actions are
executed on the same waveforms, Signal Detections and Events. Analyst actions
can be replayed at the recorded rate or at an accelerated rate. If accelerating the
replay the system clocks must be synchronized to the accelerated rate. To
evaluate the result of the Analyst action replay the tester will need to compare
the resulting set of Events and Signal Detections with the previous or expected
values.

3.4.5 Algorithm Extensibility

Extensibility of key algorithms is key for maintaining and improving the System.
Algorithm extensibility allows the algorithms to be updated or replaced without
affecting the remainder of the applications. Algorithm extensibility is modeled
using Plugin classes as described in 4.2.3 Types of Analysis Classes and 4.2.7.4
Algorithms for Automatic and Interactive Processing.

Error! Reference source not found.7 Page 16 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

3.4.6 Remote User Interface

An important consideration for the System is to provide a responsive user
interface when the analyst is accessing the data remotely. The design of the
user interface data communication needs to be optimized to minimize the delays
introduced when the data is accessed remotely.

3.4.7 Geographic Information Systems (GIS)

Maps and geospatial processing are key components of system. A GIS can
provide much of the needed capabilities but the GIS must be integrated with the
remainder of the system. To facilitate integration of alternate GIS
implementations GIS functionality should be accessed through a standard
interface protocols defined by the Open Geospatial Consortium (OGC). Various
standards which might be applicable include Web Map Service (WMS), Web
Feature Service (WFS), Web Coverage Service (WCS).

3.5 Assumptions

The following assumptions were used in developing the architecture:

• The sensor network will be similar in type, size, and complexity as currently
defined with the capability to expand as required.

• A similar number of operators, analysts, and evaluators that support the
current System will support the modernized System.

• A redundant, duplicate processing System at an alternate location will
support mission continuity and disaster recovery.

• An iterative design approach will be used for the complete lifecycle of the
project.

• The project will be a collaborative effort between SNL and the operating
agencies. The operating agencies have allocated significant staff resources to
support this effort.

• The mission must execute fully and efficiently during transition to the
modernized System.

• The System must be extensible to meet needs for the next —20 years.

4 ARCHITECTURAL REPRESENTATION

Architecture is a concept that is easy to understand, but is hard to define
precisely. In particular, it is difficult to draw a sharp line between design and
architecture—architecture is one aspect of design that concentrates on some
specific features.

Error! Reference source not found.7 Page 17 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
The System is inherently complex. To reduce the complexity, we decompose the
system into smaller components or objects through the use of Object-Oriented
Design methodology. Objects abstract from the complexity by hiding the
unimportant details and focusing on the important characteristics and
operations.

The decomposition, abstraction and hierarchy can be developed along several
orthogonal views, depending on the usage of the system:

• From the ground system application point of view, entities of the real world
are mapped onto corresponding design entities; for example, abstractions
such as Sensors, Stations, etc.

• From the end-user's (operator's) point of view, certain inputs trigger actions
to take place concurrently or sequentially throughout the system.

• From the system designer or programmer point of view, the system is
organized in a way that helps its construction, that facilitates its development
by several teams concurrently, that helps the long-term management of the
software and hardware, and that facilitates the reuse of components
throughout the system.

• From the operational and testing points of view, the system can be fully
exercised according to the use cases and scenarios. A use case is a sequence
of actions performed by the system that yields an observable result.

The system architecture attempts to capture and describe all these aspects
rigorously and systematically. It offers multiple views or models of the software,
each developed according to its own well-defined set of rules, each revealing one
aspect of the system, but all consistent with one another.

In the Rational Unified Process (RUP) used to develop the System, analysis starts
from a typical set of views, called the 4+1 View Model. It is composed of:

• Use Case View - Contains the use cases that encompass architecturally
significant behavior, classes or technical risks. A use case defines the
functions of the system by describing actor interaction with the system.

• Logical View - Realizes each use case through the use of high-level Analysis
Classes depicted on Unified Modeling Language (UML) class and sequence
diagrams. Analysis Classes describe a set of objects that share the same
responsibilities, relationships, operations, attributes, and semantics.

• Implementation View - Organizes Analysis Classes into modules. The
Implementation View addresses the organization of delivered source code
modules in order to facilitate software development, manage subsystem
reuse and reduce subsystem dependencies. Modules are then mapped into
layers; yet another level of organization intended to reduce the overall
complexity of the software.

Error! Reference source not found.7 Page 18 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• Process View - Contains the description of the processes in the system, their

interactions and configurations, and the allocation of Analysis Classes to
processes. This view is needed because the system has a significant degree of
concurrency.

• Deployment View - Contains the description of the various physical
processing platform configurations, and the allocation of processes (from the
Process View) to the physical platforms. This view is needed because the
system is distributed.

In addition to the above views, the term architecture also includes the
overarching patterns and/or frameworks that serve to shape the software.

4.1 Use Case View

Use cases (UCs) provide a basis for describing the system from a user-level or
external perspective. Because use cases describe the functionality of the system
from the user's point of view, additional context or requirements are discovered
from developing and reviewing the use cases. In turn, use cases provide a basis
for organizing and analyzing the Logical View and Process View.

In a complex system there are many use cases, some more complicated than
others. An important job of the Architecture team is to determine up front which
use cases are likely to have significant impacts on the final architecture of the
system. Such use cases are referred to as architecturally-significant and should
be architected into the system first to stabilize the architecture for later work.
The determination as to whether a given use case is architecturally-significant or
not is largely a subjective matter, but in general is based on answers to the
following questions:

• Will the use case have a strong influence on how the overall system is
architected; for example, will it require a certain framework to be put in
place, or certain widespread assumptions to be made?

• Will implementation of the use case involve many architectural elements
(many interfaces, processes, displays, etc.)?

• Does the use case represent an important (perhaps mission-critical)
interaction with the system?

• Will implementation of the use case involve higher-than-average technical
risk (e.g., excessive data rate or data storage, interfacing with a new external
system for the first time)?

The following list shows the use cases defined as architecturally-significant for
the System:

Error! Reference source not found.7 Page 19 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• 1.1 System Receives Station Data - This use case is architecturally

significant because it describes acquiring data from multiple sources in
various formats and protocols and distributing the data to processing
components within timeliness requirements.

• 1.3 System Acquires Meteorological Data - This use case is
architecturally significant because it describes acquiring meteorological data
from various sources and creating a dynamic atmospheric transmission
model to support the prediction infrasonic signal detections.

• 2.3 System Detects Events using Waveform Correlation - This use
case is architecturally significant because waveform correlation requires
high levels of processing and memory resources for evaluating large sets of
historic data for relevance to real-time events.

• 2.6 System Builds Events using Signal Detections -This use case is
architecturally significant because it involves complex algorithms for
automatically building and modifying events.

• 2.12 System Predicts Signal Features - This use case is architecturally
significant because it involves use of large and complex earth models for
calculation of signal propagation through the earth, including time-varying
models of the atmosphere and ocean.

• 3.2 Refines Event - This use case is architecturally significant because it
encompasses interaction between a large number of capabilities available to
Analysts, including synchronized interaction among those capabilities, the
Analyst ability to initiate automatic processing algorithms with overridden
system parameters, and capture and display of provenance for Analyst
actions.

• 3.2.8 Compares Events - This use case is architecturally significant because
it provides a capability to view and compare the analysis and provenance of
multiple events.

• 3.3 Scans Waveforms and Unassociated Detections - This use case is
architecturally significant because it provides a platform for the Analyst to
efficiently review large amounts of sensor data in order to evaluate, correct,
and improve signal detection and event formation results.

• 3.5 Marks Processing Stage Complete - This use case is architecturally
significant because it describes how Analysts complete their defined analysis
activities in the context of a processing stage in order to transition control to
the next processing stage.

• 5.2 Views System Results - This use case is architecturally significant
because it provides an interactive method for large number of external
customers to access a high volume and diverse set of system results in a
timely manner.

Error! Reference source not found.7 Page 20 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• 6.3 Defines Processing Sequence - This use case is architecturally

significant because it drives the system architecture to support flexible and
extensible definition of processing and analysis control flow.

• 6.7 Views System Configuration History - This use case is
architecturally significant because it defines a new capability of the system to
store and view the system configuration at any point in time to support
analysis of the impact of configuration changes.

• 7.1 Analyzes Mission Performance - This use case is architecturally
significant because it describes the display and analysis of a rich set of
metrics to assess system mission performance and tune the system.

• 8.2 Controls the System - This use case is architecturally significant due
to the System's timeliness requirements to start and stop the System and to
transfer mission assignment from the Primary to the Backup.

• 8.5 Views Event History - This UC is architecturally significant because
it describes viewing and comparing multiple versions of an event to review
the history of how an event was formed and what data was available at each
stage of event formation.

• 9.3 Replays Test Data Set - This use case is Architecturally Significant
because it describes a testing capability to duplicate system configuration
and to inject captured raw data into the system to support testing of error
fixes or newly developed capability under known conditions.

• 11.2 Develops New Algorithms and Models - This use case is
architecturally significant because it drives the system architecture to
provide interfaces to System data and processing components accessible to
Researchers through command line interfaces and a Common Object
Interface (COI).

• 13.2 Performs Standalone Analysis - This use case is architecturally
significant because it drives the System architecture to support configurable
software distributions at various scales of data processing, computing
hardware, and personnel to support third-party organizations performing
similar monitoring functions.

4.2 Logical View

The Logical View depicts Analysis Classes and their behavior in the context of
specific use cases. The functionality described in a use case is mapped to
Analysis Classes in Use Case Realizations. The following sections describe
Analysis Classes identified in the architecture and the frameworks in which they
operate.

Error! Reference source not found.7 Page 21 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.2.1 Domains

The System is composed of the following domains. These domains provide a
logical organization for the Analysis Classes of the system:

• Data Acquisition - The Data Acquisition Domain contains classes for
handling data reception from various data providers, forwarding the raw
data, and storing the data for subsequent access by the System. The System
acquires data from stations, from external data centers, and from other
sources. Data can be acquired in a variety of formats including CD-1.0, CD-
1.1, IMS-1.0, SEED, and miniSEED and the system is extensible to acquire
data in new formats in the future.

• Data Quality - The Data Quality Domain contains classes for detecting errors
in incoming waveforms that can lead to problems with processing and
analysis. The data containing errors is identified and masked to prevent
further processing. System users can override the system's quality
determination. Data quality errors include data gaps, amplitude spikes,
repeated amplitude values, linear trends and invalid gain.

• Signal Enhancement - The Signal Enhancement Domain contains classes for
applying signal processing techniques to enhance the signal content and
reduce the noise content of waveform data. The techniques include filtering,
beamforming, and three component waveform data rotation.

• Signal Detection - The Signal Detection Domain contains classes for using
various techniques to identify signals of interest. Signal detections are stored
and further processed to identify events.

• Signal Feature Measurement - The Feature Measurement Domain contains
classes for measuring features associated with a signal detection (e.g., arrival
time, back azimuth, horizontal slowness, amplitude, frequency content). The
feature measurements are used to analyze the signal detection.

• Signal Detection Association - The Signal Detection Association Domain
contains classes for using observed and predicted signal detection features to
associate signal detections with either new events or existing events.

• Waveform Correlation - The Waveform Correlation Domain contains
classes for finding new events by matching current waveforms to waveforms
of known historical events. A matching new event is created at the location
of the historical event.

• Event Conflict Resolution - The Event Conflict Resolution Domain contains
classes for resolving cases where signal detections are assigned to more than
one event. Each signal detection should be associated to at most one event.

• Event Location - The Event Location Domain contains classes for
determining an event's spatial location and temporal location and
uncertainties.

Error! Reference source not found.7 Page 22 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• Event Magnitude - The Event Magnitude Domain contains classes for

estimating the size of an event by combining the available event magnitudes
computed from individual stations.

• Moment Tensor - The Moment Tensor Domain contains classes for applying
long period waveform modeling to determine a moment tensor
representation of the source of seismic events. The moment tensor quantifies
both the event size, and the event type (earthquake vs. explosion).

• Event Source Determination - The Event Source Determination Domain
contains classes defining tools used by the Analyst to determine the source
type that an event (e.g., natural or man-made phenomena).

• Event - The Event Domain contains classes for tracking general event
information not addressed by other domains. This includes classes for
tracking event version history information, finding and tracking events of
interest, performing event searches, and computing event quality.

• Performance Monitor - The Performance Monitor Domain contains classes
for tracking both system performance and monitoring mission performance.
The system performance is characterized by disk usage, CPU load, network
traffic, etc. The mission performance is characterized by waveform data
availability, station signal detection rates, network event detection rates, etc.

• Signal Feature Prediction (includes physics models and historical models)
- The Signal Feature Prediction Domain contains classes for calculating
predicted values and uncertainties for observables associate with particular
source to receiver paths (e.g., seismic travel time, azimuth, and slowness).

• Geospatial Processing - The Geospatial Processing Domain contains classes
that access information that identifies the geographic location and
characteristics of natural or constructed features and boundaries on the
Earth, typically represented by points, lines, polygons and/or complex
geographic features, and may contain information attached to a location.
Geospatial data is often accessed, manipulated or analyzed through
Geographic Information Systems (GIS).

• Station - The Station Domain contains classes that define the installation
where monitoring sensors are installed. Multiple sensors can be installed at
the same station.

• System Configuration - The System Configuration Domain contains classes
that describe the complete set of system parameters that define the
operation of the system software. Examples include sensor thresholds, filters
(see filter, waveform), the particular version of an earth model in use and
processing sequences Each instance of a system configuration is saved so
the state of all parameters at any time can be recalled.

• Process Control - The Process Control Domain contains classes that define
the configuration and sequencing of processing components in the system.

Error! Reference source not found.7 Page 23 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• Data Distribution - The Data Distribution Domain contains classes that

provide access and distribution of processing results to external customers
of the system.

• Testing - The Testing Domain contains classes that create, store, and run
system tests, compare system test results to expected results, and test the
system via replay.

4.2.2 Analysis Classes

Analysis Classes are the fundamental building blocks of use case realizations.
The Use Case Realizations map the system functionality described in Use Cases
onto the Analysis Classes. Through this process each Analysis Class contains a
high-level description of the functionality the class is responsible to implement.
The Analysis Classes in turn become the foundation for organizing the software
implementation.

4.2.3 Types of Analysis Classes

The class stereotypes below are used to designate the responsibilities of the
analysis classes used in modeling Use Case Realizations. The stereotypes used
are Control, Plugin, Utility, Interface, Plugin Interface, Boundary, Entity,
Display, Configuration and Mechanism. Numerous other stereotypes are
possible at the implementation or source code level (e.g., proxy, adaptor,
singleton). At the architectural level, however, the concern is only with
describing the essential building blocks of the system at a rather broad, high
level. Thus, within the architecture, nearly all Analysis Classes fall into one of the
categories below. In the architecture, all classes are categorized into one of the
following stereotypes:

• Control - A class that operates in an event-driven manner and encapsulates
some significant piece of logic, typically application-level logic. Control
classes may be instantiated as a separate process or set of replicated
processes (e.g., for performance). Control classes are designed to support
separate instantiation but may in fact be combined into processes with other
classes (e.g., Display classes, other Control classes) for performance
reasons. The specific mapping of Control classes to processes is specified in
the Process View.

• Plugin - A class that encapsulates an isolated portion of the system which
can be updated independently. Plugins may identify portions of the system
for which multiple different implementations exist, such as key algorithms. A
Plugin Interface class defines the common interface for all implementations
of Plugin class behavior. Plugin classes are designed to have simple
interfaces to facilitate development and integration of new implementations
while limiting the impact to the remainder of the system. To support this
relative isolation, a Plugin class may only depend on Plugin Interface

Error! Reference source not found.7 Page 24 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
classes and the Object Storage and Distribution Mechanism (OSD). Plugin
classes are highly scalable and configurable to meet system performance
constraints. Plugin classes may be deployed in the same process as the
Control class using the Plugin or in a separate process. The specific
mapping of Plugin classes to processes is specified in the Process View.

• Utility - A class that encapsulates program logic, sometimes at the
application-level. Unlike Control classes, Utility classes are not designed to
be instantiated as separate processes; instead, they are designed to be
collocated in the same process with Control or Display classes. Their
purpose is to assist that Control class in carrying out its function. A given
Utility class may be used by several Control classes. Examples are math
libraries and System Clock.

• Interface - A class that abstractly represents a defined interface to a class.
Unlike Control and Utility classes, Interface classes have no intrinsic
behavior built into them; they are simply used to describe messages and data
communicated between classes that may potentially be instantiated in
different processes. Control classes send data to other classes that may exist
in separate processes via interfaces by using and realizing interfaces. In
particular, a Control class that sends messages according to an interface is
said to use that Interface, while a class that receives messages according to
an interface is said to realize that Interface.

• Plugin Interface - A class that abstractly represents the defined interface to
a Plugin class. A Plugin Interface class is similar to an Interface class but
the Plugin Interface class is only realized by a Plugin class. Classes
invoking a plugin always communicate with the Plugin class through a
Plugin Interface class rather than directly calling operations on the Plugin
class.

• Boundary - A class that abstractly represents an external system or actor
(i.e., user). Much like Interface classes, Boundary classes are abstract and
therefore possess no intrinsic behavior. Boundary classes can thus be
viewed as a special kind of Interface class; one in which the sender or
receiver is always external to the System. Boundary classes may represent
any external actor including users, device interfaces, or machine-to-machine
interfaces (Transmission Control Protocol/Internet Protocol [TCP/IP], File
Transfer Protocol [FTP], etc.).

• Entity - A class that encapsulates data rather than logic. Entity classes are
typically simple classes for holding data. Because their internal state is fully
self-contained, they may be persisted in a database or passed between
processes as arguments of inter-process function calls.

• Display - A class that represents a user interface display. Display classes
are similar to Control classes in that they run in an event-driven manner,
and may be instantiated within processes in various combinations (as

Error! Reference source not found.7 Page 25 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
specified in the Process View). However, unlike Control classes, Display
classes are dynamically created as needed according to events (e.g., a button
press), a distinction important enough to warrant the separate category.
Display classes also can be started and stopped by an external control
process.

• Configuration - A class representing a set of related configuration settings
defining the default algorithm parameters used when Control and Plugin
classes are invoked. Configuration classes support the ability to define
parameters based on geographic region, time of year, time of day, network,
station, channel, phase, observable type and processing stage.
Configuration classes contain version information such as installation time,
the system release that included the configuration change, etc.
Configuration classes may be grouped into logical collections (e.g.,
processing sequence configuration, station processing configuration, location
configuration) to organize the settings into general categories. This makes it
easier for System Users to navigate the System configuration to find
particular configurations. The System Maintainer sets configuration settings
offline and installs them on the system.

• Mechanism - A Mechanism class representing a basic service or framework
required by many subsystems across the system. Examples include Inter-
Process Communications, Processing Sequence Control, or Object Storage
and Distribution—fundamental components which make up the framework
upon which the application is constructed.

4.2.4 Control-Based Architecture

A concern in this effort is the requirement to decouple applications so they can
be developed and replaced without affecting other parts of the system.
Processes within the System may be initiated in two ways: automatically, in
response to new or changed data, or interactively, in response to user
commands. The system initiates automatic processing to analyze station data,
detect signals and group signal detections into events. System users invoke
interactive processing to also detect signals and group signals into events.
Further analysis is performed to estimate the event location, magnitude, and
event source. After interactive processing is completed, the system may initiate
further automatic processing to compute other supporting information for the
events formed by the operators. Similar analysis is performed in automatic and
interactive processing so the system is designed to invoke the same processing
components during automatic and interactive processing.

Another design concern is that the system should facilitate the modification or
replacement of processing components and permit the processing components
to be reordered or linked in alternate sequences. These capabilities are
supported by decoupling processing components to the maximum extent and
limiting the communication between components. The Processing Sequence

Error! Reference source not found.7 Page 26 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Control Mechanism initiates automatic processing in Control classes based on
rules defined by privileged users. Control classes operate on data stored in the
system and store the processing results back in the system, limiting the
information passing between Control classes.

The approach taken is to employ a concept called Control-Based Architecture
(CBA). In essence, CBA dictates that Control classes are the logical units of
control in the system. In more formal terms, CBA is embodied by the following
principles:

• All significant application logic is encapsulated by Control classes (not
Utility, Entity or Display classes).

• Control classes are started and stopped by an external controller program,
either the System Control Mechanism or the Processing Sequence Control
Mechanism depending on the lifecycle of the Control class.

• Control classes retrieve inputs from the Object Storage and Distribution
Mechanism (OSD), delegate algorithmic computations to Plugin classes, and
store results in the OSD.

• Display classes retrieve data from the OSD.

• Control, Display, and Plugin classes are the only classes that utilize
interprocess communication.

Adherence to these principles provides several important benefits, including the
following:

• Provides encapsulation of application logic.

Control classes are designated as the controllers for well-defined
portions of application logic (e.g., event location, event magnitude).
The Processing Sequence Control Mechanism initiates the Control
classes and coordinates application logic among the Control classes.
This approach limits the dependencies between Control classes.
Control classes retrieve data from the OSD, implement processing
logic either directly or via delegation to Plugin or Utility classes, and
then return results to the OSD to signal the Processing Sequence
Control Mechanism that the processing unit is complete.
Encapsulating all of the sequencing responsibility in the Processing
Sequence Control Mechanism rather than spreading that responsibility
across all the Control classes supports the ability to fully configure
processing sequences.

• Application logic can be relocated easily.

Error! Reference source not found.7 Page 27 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
In essence, each Control class represents a relocatable unit of
application logic which can be located in any process, as needed. A
given process might contain multiple Control classes if each has little
processing to perform. Alternatively, a process might be dedicated to a
single Control class to ensure maximum single-processor
performance. The ability to relocate application logic as needed is a
key capability for providing the flexibility to meet unknown future
processing requirements with minimal source code changes.

• Class dependencies are greatly simplified.

Control, Display, and Plugin classes perform communication, if
required, though Interface classes. Therefore, Control, Display, and
Plugin classes never depend directly on one another. Besides
facilitating relocatability (as described in the previous bullet), this
results in a reduction in dependencies between classes. This reduction
in dependencies, in turn, facilitates the ability to reorder or replace
processing units.

4.2.5 Use Case Realizations

The process of analyzing use cases (which have an outward focus), and
elaborating how the system will accomplish them internally via cooperating
Analysis Classes, is a process referred to as use case realization, and is the
primary activity performed by the Architecture team. The result of this activity is
a complete and detailed set of use case realizations covering the entire set of use
cases defined for the system.

Use Case Realizations are particularly important in the development of
architecture. A Use Case Realization describes the collaboration of analysis
classes to implement the functions defined in the Use Cases. The collection of
Use Case Realizations in turn define the structure of the architecture needed to
implement the significant features of the system. Use Case Realizations also help
identify common patterns of interaction which form the basis for defining
architectural patterns and mechanisms. Once the Use Case Realizations are
developed they become the basis for detailed software design.

4.2.6 Mechanisms

4.2.6.1 System Control Mechanism

In a distributed system it is important to ensure all processes are fully initialized
and ready to function before allowing data to flow into the system. Processes
may need to interact with other processes to complete initialization. Similarly,
when powering down it is important that processes are staged-down in a
controlled manner to ensure the system is not left in an inconsistent state.

Error! Reference source not found.7 Page 28 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Because of these issues, a mechanism for coordinating the startup and shutdown
of processes across the system is required. This mechanism is known as System
Control. This mechanism also monitors processes to ensure they are executing
properly.

4.2.6.2 Processing Sequence Control Mechanism

The System provides the capability to execute pre-defined processing sequences
for automatic data processing. This capability is supported by the Processing
Sequence Control mechanism, which is responsible for managing the execution
of processing sequences based on definitions installed in the system. The
Processing Sequence Control mechanism and select Processing Sequences are
described further in the Use Case Realization reports.

The Processing Sequence Control mechanism executes Processing Sequences
based on triggering events in the system. Example triggers include the following:

• Timer events - Processing Sequences may be executed at pre-configured
times or intervals (e.g., periodically checking for new waveform data to
process).

• Service Invocation - Processing Sequences may be executed based on
invocation of the Processing Sequence Control mechanism's service
interfaces (via API or message-based service call). This type of trigger
supports execution based on operator commands and other events in the
system; for example, for post-processing of created/modified data
entities (signal detections, event hypotheses, events, etc.), processing
stages, etc.

• Data Subscription Callbacks - The Processing Sequence Control
mechanism maintains subscriptions for select data updates in the system
that require a processing response (e.g., the creation of a new event).
These subscriptions and the corresponding Processing Sequence(s) are
installed as configuration items in the system. When the Processing
Sequence Control mechanism receives callbacks for configured data
subscriptions, it invokes the associated Processing Sequence(s).

The Processing Sequence Control mechanism supports a scalable, distributed
processing model for execution of processing sequences. Tasks executed by the
Processing Sequence Control mechanism may be implemented as service
invocations routed to Control classes running in separate processes, potentially
on separate hosts within the system. This approach allows for parallel execution
of Activities within a Processing Sequence across multiple processes and nodes.

Error! Reference source not found.7 Page 29 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.2.6.3 Object Storage and Distribution Mechanism

A central component of the System is the persistent storage of an extensive
history of sensor and station data, station configuration data, significant signal
detections and events. In previous versions of the system this information is
stored in a Relational Database Management System (RDBMS) and access to the
data was achieved by directly interacting with the RDBMS query language. This
direct form of access resulted in strong dependencies between the application
software and tools and the database structure, resulting in significant impact
when modifying or expanding the underlying database schema. A design goal
for the modernized system is to isolate the application software from the
underlying database schema and data storage technology to limit the impact of
changing the database structure and implementation..

This isolation will be achieved through a mechanism called the Object Storage
and Distribution Mechanism or OSD. The OSD will be responsible for persisting
and retrieving data in the System. Structured Query Language (SQL) calls from
software applications will be replaced by calls to the OSD to retrieve the data.
The OSD will be responsible for translating the data calls into queries on the
underlying data storage technologies, integrating results if the query required
data from multiple data stores, and returning results. The data storage
technologies could include RDBMS, a waveform store (see section 4.3.4.2.3 for
possible technology selections), a provenance store (see section 3.4.2 and
section 4.3.4.6), etc. This pattern of abstracting the database interface is known
as Data Access Object design pattern. The definition of the query interface to the
persisted data and associated data class definitions is described in the Common
Object Interface (COI). The OSD provides interfaces using ubiquitous
technologies (e.g., HTTP, JSON) to support access from multiple languages and
may also provide standard programming language interfaces for a limited
language set. Section 4.2.7.1 describes data access implementation patterns.
Section 4.3.4.1 describes related executable architecture prototyping work.
Information available in the OSD is synchronized between the primary and
backup. The synchronization implementation will use a combination of data
replication strategies provided by the selected database technologies and
custom software.

The OSD will also provide a subscription service to notify any software
application that has registered interest in a data object when the data object is
modified. Data often needs to be pushed or distributed to interested clients
(subscribers) at the time that it is stored in the database (i.e., persisted), a pattern
commonly referred to as publish/subscribe. The System will distribute either
whole Entity classes to clients or, if needed to optimize performance, fine
grained data distribution at the level of changes to Entity classes may be
distributed to clients. The OSD may cache data in memory in addition to
database storage to decrease access time to retrieve the data. The OSD will

Error! Reference source not found.7 Page 30 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
support the typical database functions Search, Create, Retrieve, Update, and
Delete (or SCRUD). The Delete operation will be limited to only system
administrators. Instead of delete, other operators will be able to mark an object
as removed. Removing an object will mark the object as invalid but keep a copy
in storage for review or further analysis.

The following figure illustrates the components of the OSD Mechanism
developed during prototyping in Iteration E2. The mechanism provides two
basic functions: Stored Data Access and Data Distribution. The figure shows the
interaction of Data Access Objects with Entity Classes and the ORM to provide
data storage and access. The figure also shows access to the stored data via
scripting languages. In addition, the figure shows Data Distribution
implemented via Publish/Subscribe Notifications or via Caching. This model of
the OSD Mechanism is the basis for the executable architecture and will evolve
from further prototyping.

Object Storage & Distribution (OSD) Mechanism

Data Distribution

Pub/Sub Notification

lb, Caching (TBD)

Stored Data Access

cripting Access

Implements

the COI

Data Store Data Store

Figure 4-1. OSD Components

Error! Reference source not found.7 Page 31 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.2.6.4 Inter-Process Communication

As described previously, the OSD Mechanism is the primary means for
exchanging data in the System. When communication is required between
Control, Display, and Plugin classes, the communication will be implemented
via inter-process communication or IPC. Because of the highly distributed
nature of the System, limiting the use of IPC will support modifying the
processing sequence and replacing Control or Plugin classes. When used, the
IPC mechanism supports patterns of communication, described below:

• Request/Reply - A type of call where the caller is not blocked, but can
receive return data from the recipient at a later time via a callback. This
pattern of communication is used frequently. In particular, Request/Reply
communication is used heavily for communication between Display classes
and Control classes. In this situation the Display class typically makes a
request and then displays the result when the reply is subsequently received.
This pattern is ideal for the user interface, which cannot afford to be blocked
waiting for the reply but also needs to provide confirmation or feedback to
the user regarding the request.

• Publish/Subscribe - In a publish/subscribe application, senders publish
messages to a named topic that serves as a routing key for messages.
Consumers may subscribe to one or more publish/subscribe topics in order
to receive messages published to those topics. All subscribers to a given topic
will receive copies of every message sent to that topic. Publish/subscribe is
typically implemented as asynchronous communication where publishing
and receiving messages are decoupled.

4.2.7 Patterns

Patterns describe common architectural approaches to addressing various tasks
in the system. Patterns describe common interactions between the application
software and the basic mechanisms. These patterns emerge from development
of the Use Case Realizations and provide some of the fundamental building
blocks for the system architecture.

4.2.7.1 Data Access

Control classes interact with the Object Storage and Distribution Mechanism to
access persistent data in the system. The OSD Mechanism implements get and
store operations that provide access to data. The OSD Mechanism abstracts the
underlying data persistence technology and query language, presenting clients
an implementation agnostic programming interface. The Control class is
dependent on the OSD but not dependent on the underlying database. The
Control class passes the attributes identifying the object to retrieve to the OSD

Error! Reference source not found.7 Page 32 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Mechanism and the requested object is returned to the Control class. The
Control class modifies the requested object and then calls the OSD Mechanism
to store the object. The OSD Mechanism also provides a local store operation
that updates the object but the update is not visible globally. The selection for
storing globally or locally is defined in a Processing Context object that is passed
to the OSD Mechanism as part of the store operation. The OSD Mechanism can
also notify Control or Display classes when an individual object or collection of
objects is modified. Control or Display classes register a callback for the object
or collection of interest with the OSD Mechanism and the OSD calls the callback
when the object or collection is modified. A common example occurs when a
Display class provides a list of events in the system. The Display class registers
a callback with the OSD Mechanism for all events. The OSD Mechanism calls the
Display when new events are created or modified and the Display class updates
the user interface. Control or Display classes unregister when the notification
is no longer required.

For subscription-based OSD data callbacks that occur over a network (e.g.,
between processes and/or nodes), the executable architecture prototype will
use a pattern similar to the Claimcheck Enterprise Integration Pattern (EIP).1
Rather than serializing and transmitting the data Entity to subscribing processes
directly, under this pattern, the OSD will store the Entity, making it globally
accessible, and will transmit a "claimcheck" message to subscribers. The
claimcheck message will include reference information sufficient for the
subscriber to retrieve the Entity from the OSD upon receipt of the message. This
pattern provides an efficient means of communicating data between processes,
even for large data entities.

4.2.7.2 Processing Context

The Processing Context object describes to the OSD and PSC mechanisms why
data is being stored and processed. A Processing Context includes information
about how data was created and also includes a storage context specifying
whether the data is stored with a private visibility or with a global visibility. The
OSD manages data access based on its storage context. Data stored with private
visibility is only accessible within the Processing Stage that stored the data. This
Processing Stage can be one of the System's automatic Processing Stages or a
Processing Stage corresponding to an Analyst's interactive analysis session.
When a Processing Stage stores data to the OSD with a private context it allows
the OSD to distribute that data to Display classes for presentation and to the PSC
mechanism or Control classes for processing while keeping the data's visibility
local to that Processing Stage. When a Processing Stage stores data with a global
context the OSD makes that data globally accessible and available for display and
processing by other Processing Stages. Since data stored with a private context
is only accessible within the Processing Stage storing the data, this type of

1 G. Hohpe and B. Wolfe, Enterprise Integration Patterns, Boston: Addison-Wesley, 2003.

Error! Reference source not found.7 Page 33 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
storage is temporary. The OSD Mechanism may remove the data at the end of
the Processing Stage. Data stored in a global context is persisted indefinitely in
the OSD Mechanism for future access. Processing Context also contains creation
metadata describing how the data being stored was created. This metadata
includes the automatic or interactive Processing Stage creating the data. When
applicable, the metadata also references the Processing Step and Processing
Sequence being executed when the data was created.

4.2.7.3 Analysis Modeling for User Interface

Display classes are the primary point of interaction between the user and the
System. They model how the System presents information to the user and how
the user provides input to and requests actions on the System. Display classes
are typically opened when requested by the user and closed when the user has
completed the interaction. Display classes request and receive data from the
OSD either by directly requesting information or subscribing for updates.
Display classes synchronize their views with changes made to the underlying
data model. Display classes also pass user requests to Control classes through
IPC.

The design of the Analyst workspace is independent but related to Use Case
Realization Display classes. The Display classes for Analyzes Event UCR,
Refines Event URC, Scans Waveforms and Unassociated Detections UCR, and
several other children UCRs define subsets of information and interactions that
are part of the workspace. For example, the Analyzes Event Display is
responsible for displaying the list of events, the Selects Data for Analysis Display
displays the operator workflow, the Refines Event Display shows the detailed
information about an individual event, the Enhances Signals Display shows the
waveforms during the time interval of an event, and the Detects Signals Display
shows the signal detections associated with an event.

In Use Case Realizations, Display classes are primarily modeled one per use case
to capture a summary of the information transferred via the user interface for
that use case. Display classes are also modeled to reflect common user interface
functionality shared between Use Case Realizations. Display classes do not
represent the actual layout of screens or windows in the user interface, and are
presented as a means of communicating the interactions between users, Display
classes, Control classes, and Mechanisms (like the OSD). The design and layout
of Display classes along with input action behavior are addressed in User
Interface Storyboards. Storyboard mockups aim to provide a visual
representation of the flow of action between a user and the System for a given
Use Case.

Error! Reference source not found.7 Page 34 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.2.7.4 Algorithms for Automatic and Interactive Processing

The System has the requirement to allow the users to access the same
algorithms used during automatic processing. This is achieved by the Processing
Sequence Control Mechanism invoking the Control class for automatic
processing and a Display class invoking the same Control class for interactive
processing. The System Maintainer sets the default Configuration used during
automatic processing while Analysts can select to override the settings used
during interactive processing. When first started by System Control both
Control and Plugin classes use Configuration classes to determine their default
settings. The Control and Plugin classes will use these defaults for any settings
that are not explicitly overridden in a particular call to the Control or Plugin.
The system associates processing results (e.g., events, signal detections) with the
settings used to create those results. Where applicable, the system uses these
settings rather than the system default Configuration when invoking additional
automatic processing to further refine the results. This ensures Analyst settings
supersede default settings.

A further requirement is for the system to facilitate the update and replacement
of algorithms. The architecture approach for this capability is to identify likely
candidates for update and replacement and to model these candidates using
Plugin classes. The Plugin class is invoked by a Control class through a Plugin
Interface class. This isolates visibility of the Plugin class from the rest of the
system. Figure 4-2 shows the relationship between Control, Plugin Interface,
and Plugin classes. The Plugin class does not interact directly with other
Control or Display classes in the system but operates on data provided via the
Plugin Interface class. This limits requirements on the design of the Plugin
class from implementing the control logic and data access logic developed for the
entire system. Control classes can select among multiple Plugin classes that
implement the same function by designating a configuration parameter to
identify the desired Plugin.

Error! Reference source not found.7 Page 35 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

«control* 1.
61 Control Gass

USe „.,1_ aphain interface.,
Plugin IF

realize

«plugim>
6 Plugin Class

dependency

rlugin interface»
Other Plugin IF

dependency

«mechanism),
2 OSD

Figure 4-2. Relationship between Control Class and Plugin Class

The following sequence diagrams describe the pattern of interactions between
Control classes and Plugin classes. This pattern is repeated in Use Case
Realizations where Plugins are used. All the details of the interactions may not
be repeated in the individual UCRs when they do not differ from the pattern
described here.

Error! Reference source not found.7 Page 36 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

; Initialize

:System
1=1 Control

opt

L lc :Control
1=1 Class

[if Plugin 
1
is called through a control class]

1: Start ( )

:OSD

2: Get Configuration ( )

3: Create Parameters ( )

:Control Class
1=1 Parameters

:Plugin
Class

4: Get lugin ( )

5: Initialize ( )

opt

[if Plugin s called as a service]
1: Start ( )

T-

Figure 4-3. Plugin Initialization

This sequence diagram shows how Plugin classes are initialized. If the Plugin
class is called by a Control class, the Control classes initializes the Plugin
classes when the System starts. The System Control mechanism calls each
Control class to initialize. The Control class retrieves the default configuration
from the Object Storage and Distribution Mechanism and creates the parameters
that will be used to call the Plugin classes. The Control class also identifies the
set of Plugin classes that implement the Control class functionality from the
parameters and calls each Plugin class to initialize. If the Plugin is called as a
service, the Plugin class is started by the System Control Mechanism.

Error! Reference source not found.7 Page 37 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

linroke

:Processing
Sequence Control

p :DSD :Plugin IF

1: Invoke processing context, data Ireferences, parametr overrides )

20: Set Inlrocation Completion Stat

p :Plugth Class

2: Get Parametek ( processing context data references) I

3: Get Data ( dab references ) I

4: Get Parameter ( processing context, data )

5: Get Pararrleters ( data ) / I
  6: Get Parameters ( data )

 

11-7: Parameters Reply

9: Apply Parametr Overrides ( paraf eters, parameter overrides)

The Plugin determines
any parameters specific to
this particular Plugin.

8: ParameterslReply

10: Compute ( professing context, dita references, paramelers

4 

11: Get Data ( dalta references )

12: Select Plugin Determines the Plugin binding and the
parameters to pass to the Plugin based
on the Control class configuration, the
processing context, and the data being
processed.

13: Invoke ( datt parameters )

17: Invoke Rep4 ( results )

>I- 14: Invoke ( data, p+ameters )

T
15: Compute Result ()

16: Iri:oke Reply ( results )

18: Associate ( Larameters, resultsr)

19: Store ( resulis and parameters, processing context)

processing context)

Figure 4-4. Plugin Invocation in Automatic Processing

Error! Reference source not found.7 Page 38 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
This flow describes how Control classes invoke Plugin classes to execute
algorithms or implement models during automatic processing. The Processing
Sequence Control Mechanism calls the Control class when triggering criterion
are satisfied with data references for the information to be processed and the
processing context identifying the processing stage. The Control class uses the
data references to retrieve the data to process from the OSD. The Control class
determines the Plugin class to call and the parameters from the processing
context and the data. If the Plugin class requires any plugin-unique parameters,
the Plugin class determines those parameters from the data. The Control class
sets creation information (e.g., the Processing Stage and system process invoking
the Control class, invocation time) in the parameters class. The Control class
calls invoke passing the data and the parameters through the Plugin Interface
class to the Plugin class. By exception to this pattern, if the Plugin class
requires large data sets that would be inefficient to pass to the Plugin class each
time it is invoked the Plugin class may access either the OSD or a plugin specific
data store to retrieve data. The Plugin class then computes the result and
passes the result back to the Control class. The Control class then associates
the processing parameters with the results, stores the parameters and the result
based on the processing context, and notifies the Processing Sequence Control
Mechanism of the completion status.

Error! Reference source not found.7 Page 39 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

E Interactive Calculation

G :Display Class El :Control Class 9 :OSD

1: Get Parameters ( proce sing context, data refirences )

2 Get Data ( data reLrences )

8: Parameters Reply ( )

9: Modify Parameters ( )

G :Plugin IF

3 Get Parameters d processing context,

4 Get Parameters ( ata

7: Parameters Reply ()

data )

:Plugin Class

5 Get Parameters ( ddita )

6: Parameters Reply ()

10: Compute ( procesis ng context, data referiences, parameters )

11: Get Data ( dat rferences )

12: Select Plugin ( )

13: Invoke ( data, pa ameters )

17: Invoke Reply ( r4ults )

18: Associate ( pararheters, resufts )

14-: Invoke ( data, par meters )

16: Irivoke Reply ( results )

19: Store ( resufts a parameters, processing context )

20: Compute Reply ()

15: Compute Result ( )

Figure 4-5. Plugin Invocation in Interactive Processing

Error! Reference source not found.7 Page 40 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
This sequence diagram shows how Control classes and their associated Plugin
classes are invoked interactively. The Display class retrieves the default or last
used parameters from the Control class based on the processing context and the
data. The Control class groups the parameters for the Control class with the
Plugin-unique parameters from the appropriate Plugin class and returns the
parameter set to the Display class. The Display class presents the parameter
values to the user and the user modifies selected values and requests the System
to compute based on the modified set of parameters. The Display class calls the
Control class with the parameters and the Control class invokes the appropriate
Plugin class passing the parameters similar to automatic processing. The
Control class sets creation information (e.g., the Processing Stage and identifier
of the user invoking the Control class, invocation time) in the parameters class,
associates the parameters with the result, stores both in the OSD, and passes the
result back to the Display class.

Plugin classes may create results containing information relevant to
provenance, performance monitoring, tuning, etc. specific to the plugin
implementation that go beyond what the Plugin is required to return by the
Plugin Interface. Since the implementation specific results cannot be known a
priori, each Plugin is responsible for defining Entity classes representing the
plugin specific results and associating them with the results returned via the
Plugin Interface.

Example Plugin Interface classes are shown in several UCRs (e.g., System
Refines Event Location, System Detects Signals, and System Builds Events using
Signal Detections). Most of the Plugins perform calculations but some of the
Plugin classes implement a Plugin Interface designed to provide data used in
other calculations (e.g., the Earth Model Plugin provides values to Signal Feature
Predictor Plugins). The table below lists the Plugin Interface classes that are
currently in the Analysis Model. In some cases, the Analysis Model also includes
particular specializations of a Plugin Interface that may exist in the System to
satisfy system requirements while in other cases the Analysis Model only
includes the basic Plugin Interface.

Error! Reference source not found.7 Page 41 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

Table 4-1. Modeled Analysis Plugins

Plugin Interface Plugin Specializations Defined in UCR Used in UCR

Signal Detector System Detects Signals System Detects Signals,
Detects Signals

Signal Onset Time
Refiner

AIC Signal Onset Time
Refiner, Waveform
Cross-Correlation
Signal Onset Time
Refiner

System Detects Signals System Detects Signals,
Detects Signals

Signal Detection
Associator

Match Signal Detection
Template

System Builds Events
using Signal Detections

System Builds Events
using Signal Detections,
Builds Event (UCR not
modeled)

Waveform Correlation
Event Detector

System Detects Events
using Waveform
Correlation

System Detects Events
using Waveform
Correlation, Builds
Event (UCR not
modeled)

Event Locator Master Event Locator System Refines Event
Location

System Builds Events
using Signal Detections,
System Refines Event
Location, Refines Event
Location

Signal Feature
Predictor

System Predicts Signal
Features

System Predicts Signal
Features, System
Builds Events using
Signal Detections,
System Refines Event
Location, Detects
Signals (not modeled in
UCR), System Refines
Event Magnitude (UCR
not modeled), Refines
Event Magnitude(UCR
not modeled), Monitors
Mission Processing
(UCR not modeled)

Earth Model System Predicts Signal
Features

System Predicts Signal
Features, System
Builds Events using
Signal Detections,
System Refines Event
Location, Detects
Signals (not modeled in
UCR), System Refines

Error! Reference source not found.7 Page 42 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

Event Magnitude (UCR
not modeled), Refines
Event Magnitude(UCR
not modeled), Monitors
Mission Processing
(UCR not modeled)

Meteorological Data
Update

System Acquires
Meteorological Data

System Acquires
Meteorological Data

Waveform Data Quality System Determines
Waveform Data Quality

System Determines
Waveform Data Quality

—END OF TABLE—

Additional Plugin Interface classes will be created as UCR modeling progresses.

The following table lists plugins that may be modeled in the future. This table

does not show all plugins that are unique to a particular organization.

Table 4-2. Potential Analysis Model Plugins

Plugin Interface Plugin Specializations Defined in UCR Used in UCR

Multiple Event Locator System Refines Event
Location

System Refines Event
Location, Performs
Multiple Event
Location

Signal Feature
Measurer

System Measures
Signal Features

System Measures
Signal Features,
Measures Signal
Features

FK Feature Measurer System Measures
Signal Features

System Measures
Signal Features,
Measures Signal
Features

Polarization Feature
Measurer

System Measures
Signal Features

System Measures
Signal Features,
Measures Signal
Features

Waveform Filter System Enhances
Signals

System Enhances
Signals, Enhances
Signals

Waveform Rotator System Enhances
Signals

System Enhances
Signals, Enhances
Signals

Waveform Beamer System Enhances
Signals

System Enhances
Signals, Enhances
Signals

Error! Reference source not found.7 Page 43 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

Moment Tensor
Evaluator

System Evaluates
Moment Tensor

System Evaluates
Moment Tensor,
Evaluates Moment
Tensor

Magnitude Estimator Network Magnitude
Estimator, Station
Magnitude Estimator,
Relative Magnitude
Estimator

System Refines Event
Magnitude, Refines
Event Magnitude

System Refines Event
Magnitude, Refines
Event Magnitude

Phase Labeler System Measures
Signal Features

System Measures
Signal Features,
Measures Signal
Features

Event Conflict Resolver System Resolves Event
Conflicts

System Resolves Event
Conflicts

Similar Event Finder System Finds Sirnilar
Events

System Finds Similar
Events, Compares
Events

Analyst Performance
Metric Calculator

Views Analyst
Performance Metrics

Views Analyst
Performance Metrics

Event Quality
Calculator

System Builds Events
using Signal Detections

System Builds Events
using Signal Detections

Station Performance
Calculator

System Builds Events
using Signal Detections

System Builds Events
using Signal Detections,
System Refines Event
Location

Network Performance
Calculator

System Builds Events
using Signal Detections

System Builds Events
using Signal Detections

Event Comparer Analyzes Mission
Performance

Analyzes Mission
Performance,
Compares Events

Bulletin Comparer Analyzes Mission
Performance

Analyzes Mission
Performance

Data Provenance
Analyzer

Views Event History Views Event History,
Analyzes Research
Events

Waveform Correlator System Detects Events
using Waveform
Correlation

System Detects Signals,
System Detects Events
using Waveform
Correlation, System
Finds Similar Events

—END OF TABLE—

Error! Reference source not found.7 Page 44 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.2.7.5 Event Analysis Classes

Events are the fundamental output of the System. The following diagram shows the
relationships between Events, Signal Detections and Waveforms. An Event is the
occurrence of some source of energy within the Earth's body, oceans, or atmosphere that
can be detected by seismic, hydroacoustic, and/or infrasonic sensors. The Event class is
composed of a set of Event Hypotheses each representing a different analysis of the Event.
Each Event Hypothesis contains a summary of the contributing stations, associated signal
detections, and a set of location solutions for the Event along with the parameters used to
analyze the Event. One of the Event Hypotheses is the overall preferred version of the
Event and represents the best available analysis of the Event. A Waveform is either the raw
or derived output of seismic, hydroacoustic, and/or infrasonic sensors. A Signal Detection
is a signal of interest. Similar to the relationship between Event and Event Hypothesis,
each Signal Detection is composed of a set of Signal Detection Hypotheses representing
different ways of analyzing the signal of interest. Each Signal Detection Hypotheses is
described by a time interval on a Waveform. There may be signal enhancement techniques
applied to the Waveform to help reveal the signal of interest. An Association object
represents the relationship between an Event Hypothesis and a Signal Detection
Hypothesis. An Event Hypothesis and Signal Detection Hypothesis that are associated to
each other will each have a relationship to the Association class. If the Event Hypothesis
and Signal Detection Hypothesis are later unassociated then their relationship to the
Association class is retained for provenance. Event Hypotheses and Signal Detection
Hypotheses record the history of the analysis of Events and Signal Detections and thus
retain a significant portion of provenance in the system.

«entity.
1j Event

(from Event Elements)

analyst rejected
«entity.

j. Signal Detection

(from Signal Detection Elements)

«entity. «entity. «entity,«entity.
2 Event Hypothesis 1 Association 2 Signal Detection Hypothesis Waveform

(from Event Elements) - (from Event Elements) (from Signal Detection Elements) 1 (from Signal Enhancement Elements)

«entity.
2 Feature Measurement

I  (from Signal Feature Measurement Elements)

Figure 4-6. Event Analysis Classes

4.2.7.5.1 Event Hierarchy

One of the significant features of the System is retention of intermediate results
during event analysis. The previous system contained a limitation that only a
single Event Hypothesis could be stored for each stage of automatic or
interactive processing. The System will allow Analysts to store multiple Event

Error! Reference source not found.7 Page 45 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Hypotheses during each processing stage as shown in the figure below. Because
multiple Event Hypotheses may be saved for each processing stage, the Analyst
must designate which Event Hypothesis is the preferred version for that
processing stage. Another significant contributor to event analysis is the set of
data available to each Analyst at the time they are reviewing the event. Late
arriving data can modify the solution so a record of the data available at the time
an Analyst is reviewing the Event is an important factor in understanding the
event solution result. Providing the complete set of Event Hypotheses that
compose an Event allows detailed post analysis of the event formation process.

Event Hypothesis

V1.0

Processing

Stage 1

4.2.7.5.2 Processing Stages

Event Hypothesis:

V2.1

I 1 Event Hypothesis:
V2.2

Processing

Stage 2

Event

 JI

Processing

Stage 3

Figure 4-7. Event Hierarchy

Event Hypothesis:

V4.1

Processing

Stage 4

Events progress through several levels of analysis by both the System and
Analysts. The various levels of analysis are identified by the term Processing
Stage. The ability to modify and define the set of Processing Stages and
Processing Sequences is a requirement for the System. To facilitate this goal, the
Processing Stages and Processing Sequences associated with each stage are
defined as part of the configuration of the system. The Processing Sequence
Control Mechanism will control the overall System processing, calling the
Processing Sequences associated with a Processing Stage based on the
configured triggers. The Analysts control the progression from one Processing
Stage to another.

Typically, as data arrives at the System, the System processes input data and
creates a set of initial Events as the first processing stage. The System will
continue to process waveform data as it arrives and automatically refine Events

Error! Reference source not found.7 Page 46 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
until an Analyst opens a time interval for interactive analysis in a new
Processing Stage. When the Analyst completes their analysis the System enters a
system Processing Stage where the System updates Events with any late arriving
data and updates any Event inconsistencies left from the Analyst Processing
Stage. Events continue to progress through the configured series of Processing
Stages until reaching a state where the Event information is released to external
customers. The System captures information detailing the evolution of each
Event as it proceeds through the Processing Stages to provide provenance for
each Event.

4.2.7.5.3 Error Handling and System Logs

Common methods of error handling and message logging will be defined for the
system and all system components including algorithm implementations will
adhere to the common methods. The intent is to utilize standards and off-the-
shelf components to implement these functions. The message logging
implementation should have the capability to aggregate all system messages in a
single log as an aid in debugging.

4.3 Implementation View

The Logical View is concerned with defining the Analysis Classes and the
collaboration between them necessary to support the use cases. The
Implementation View, on the other hand, is concerned with organizing those
Analysis Classes into related groups to facilitate development. In practical terms
this entails grouping Analysis Classes together into modules, each of which
produces a single library, followed by further groupings of subsystems into
layers. Several factors bear consideration when determining these groupings,
including the following:

• Classes that work closely together should be grouped together into the same
subsystem to hide complexity from outside clients.

• Classes that are logically independent of each other should be kept in
separate subsystems so that clients get only what they really need when they
use a subsystem.

• Classes that require similar developer domain expertise should be grouped
together, to facilitate team development.

• Dependencies between subsystems should be minimized, to the extent
possible, to facilitate parallel development.

• Circular dependencies are not permitted.

Error! Reference source not found.7 Page 47 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.3.1 Layers

The System software is organized into layers, as depicted in Figure 4-8.
Implementation View Layers below.

App Control Layer

M App Plugin Layer

11 App View Layer

App Interface Layer

11 App Element Layer

Mechnism Layer

1=-1 System Noftware Layer

Figure 4-8. Implementation View Layers

Each layer contains numerous subsystems, which in turn contain the actual
source code files. Subsystems may depend upon (or import) other subsystems
according to their needs, but only so long as they adhere to the following rules:

Error! Reference source not found.7 Page 48 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• In general, a subsystem in a given layer may only depend on another

subsystem if it is within the same layer or below.

• Import cycles are never allowed (e.g., A imports B, B imports C, and C imports
A).

Adherence to these rules has a minimizing effect on dependencies in the system
overall, resulting in software that is easier to develop, understand and maintain.
Each layer is intended to encapsulate the system at a particular level, as
described below:

• System Software Layer - Provides direct access to COTS, open- source
software and third-party libraries. These include, among others, hardware
device drivers and the OS.

• Mechanism Layer - Contains subsystems that implement basic services
required by many subsystems across the system. Examples include Common
Object Interface, Processing Sequence Control, and System Control —
services which provide the framework upon which the application is
constructed. It also includes primitive classes such as strings, times, timers
and mathematical elements. Because this layer is intended to isolate the rest
of the application from specific COTS or open-source software and OS
implementations (thus improving portability), application code in layers
above are expected to use the mechanisms provided in this layer rather than
using COTS, open- source software and OS features directly whenever
possible.

• Application Elements Layer - Contains only Entity and Utility classes. This
layer encapsulates the data elements of the application (e.g., Events, Signal
Detections) which are needed by multiple subsystems. Because these classes
are reused extensively, it is particularly important to minimize dependencies
between subsystems in the Application Elements Layer. Subsystems in this
layer are organized into a dependency hierarchy, with no cyclic
dependencies between subsystems. A goal of this layer is to structure the
data to minimize unneeded dependencies in higher layers. For instance, data
that is widely used should be as low as possible in the hierarchy.

• Application Plugin Layer - Contains Plugin classes that encapsulate
replaceable portions of the system (portions of the system for which multiple
different implementations exist, such as key algorithms). Plugin classes are
controlled by Control classes and are invoked via a Plugin Interface class.

• Application Interfaces Layer - Contains only Interface and Plugin
Interface classes. This layer encapsulates the inter-process interfaces
through which Control, Display and Plugin classes communicate with one
another. Interface and Plugin Interface classes can only depend on Entity
classes in the layers below (Application Elements Layer and Mechanism
Layer).

Error! Reference source not found.7 Page 49 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
• Application Control Layer - Contains the Control classes that encapsulate

application logic. Control classes never depend on other Control classes.
Control classes communicate data primarily through the OSD and the
Processing Control Mechanism controls the sequence of Control class
execution. This approach attempts to eliminate coupling between Control
classes to permit multiple implementations of algorithms and facilitate
replacement or addition of new algorithms. If cases arise where direct
communication is required between Control classes then they would
communicate with each other via IPC (Interface classes, from the
Application Interfaces Layer). Thus, subsystems within this layer are all
independent from one another (from a static dependency standpoint).

• Application View Layer - Contains Display classes that encapsulate the
user interface. Dependency-wise this layer is logically at the same level as the
Application Management Layer and thus could have been included as part
of that layer. It was separated however because its purpose is different than
the Application Management Layer; from a client/server perspective the
displays in the Application View Layer act as the clients whereas the
Control classes in the Application Management Layer act as the servers.

4.3.2 Frameworks

The System architecture is investigating frameworks to leverage open-source or
commercial products that could potentially provide key components of the
system, especially for user interface generation. Frameworks can provide
significant functionality but also impose additional constraints on the
implementation. Therefore, prototyping potential framework candidates is
essential to determine the usefulness as well as the constraints associated with
each candidate.

4.3.3 Executable Architecture Prototyping Goals

The prototyping targets early implementation of key aspects of the architecture.
The purpose of prototyping the executable architecture is to demonstrate an
implementation of key system features and define fundamental software
patterns with the intent of proving the feasibility of the architecture design.

Previously the prototyping team surveyed possible COTS and open-source
components and developed exploratory prototypes addressing the following
core elements of the system architecture:

• Inter-Process Communication (IPC) is a key underlying capability required
in distributed computing architectures for the exchange of data, control,
and status information between independent processing residing on one
or more hosts.

Error! Reference source not found.7 Page 50 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

• The Object Storage and Distribution (OSD) Mechanism provides
application programming interfaces (APIs) for access to data stored in the
database as well as distribution of data among processing components.

• Processing Control is the software infrastructure that provides for the
definition, configuration, execution and control of processing
components, supporting both automated and interactive analysis
processing. This element supports the System Control and Processing
Sequence Control (PSC) Mechanisms.

• The User Interface Framework (UIF) provides a flexible platform for the
definition of extensible graphical user interface (GUI) components and
composition of GUI displays supporting users of the System and research
tools.

An important goal for the Executable Architecture is the definition of control
flow in the System. Control flow is exercised through the Processing Sequence
Control Mechanism (PSC) as described in Section 4.2.6.2, Processing Sequence
Control Mechanism. The Executable Architecture demonstrates how the PSC
interacts with Control classes and their associated Plugins to control processing
in the automatic pipeline and during interactive processing. The PSC passes
control to the configured Control class using messages. Data references are
passed to the Control class using the Claimcheck pattern. The Control classes
use installed configuration to determine the particular Plugin class to invoke
and determine the default parameters for the Plugin to execute. The pattern for
Control class / Plugin interaction is shown in Section 4.2.7.4 Algorithms for
Automatic and Interactive Processing. After execution the Control class returns
control flow to the PSC Mechanism for the processing sequence to continue.

Another goal of the Executable Architecture is demonstration of how Control
classes and Plugins access data from the OSD. Control classes use data
references passed by the PSC to call a service interface provided by the OSD to
retrieve data assuming a service interface can respond within timeliness
requirements. The data is serialized and returned to the Control class. Because
serialization protocols are supported across multiple languages, the serialization
technique provides a method of interfacing software components implemented
in multiple languages. Another aspect of the OSD is the capability of Control
classes to subscribe for updates when data changes. In the current design the
OSD is responsible for accepting subscriptions about individual data or
collections of data and then using a callback to inform the Control class of
changes. Prototyping permits testing how this approach would scale to handle
the data rates and processing distribution of the System.

The data access prototyping requires a more complete definition of the data
objects in the system. Development of the Data Model has begun the definition

Error! Reference source not found.7 Page 51 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
of how information is organized in the system. The prototyping effort focuses on
how the data is created, transmitted and stored in the System. Prototyping
introduces additional constraints on the Data Model which helps mature the
Data Model design and inform the development of an example Component
Interface Specification.

4.3.4 Executable Architecture Prototype Elements

The Executable Architecture prototyping is currently focused on implementing
automated signal detection processing software. As the prototyping progresses,
the Executable Architecture will expand to implement interactive signal
detection and the supporting user interface component. The prototype will
address a number of signal detection-related processing functions, including
waveform quality control (QC), signal enhancement (including filtering, rotation
and beaming), signal detection and signal feature measurement.

In order to meet the goals described in Section 4.3.3, the executable architecture
prototype will include the following key elements:

• Inter-process Communication Implementation

• OSD and Data Model Implementation

• Processing Sequences

The following sections provide a description for these elements, including a
discussion of key design decisions and software technologies selected as part of
the prototyping work.

4.3.4.1 Inter-process Communication Implementation

The team has investigated two technology pairs that together support the
messaging and data encoding required for Inter-Process Communication. Both
technology pairs are language-agnostic in order to support applications written
in any of the languages selected for the System (i.e., C, C++, Java, and Python).

1. HTTP / JSON - Using this technology pair, clients communicate with
external applications by sending HTTP request messages with JSON-
encoded bodies containing the request details (e.g., data references,
parameters to the external application, etc.). The target application hosts
the requested HTTP interface (e.g., via an embedded HTTP server) and
responds to requests with an HTTP response message including an HTTP
status code and any response data in a JSON-encoded body.

2. AMQP (RabbitMQ)/ JSON- Using this approach clients communicate with
external applications by sending request messages via a dedicated AMQP

Error! Reference source not found.7 Page 52 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
queue with a JSON-encoded request details (e.g. data references,
parameters to the external application, etc.). The target application
listens for request messages on the specified queue and responds to
requests on a separate response channel (identified in the request) with
a response message including processing status and results in JSON.

The primary advantage of HTTP is that it is a ubiquitous solution (used
throughout the web) with an enormous development community and user base.
As a human-readable format, JSON also facilitates user access to data. The
primary limitation of this approach is that HTTP is not well suited to patterns
other than request/response (e.g., publish/subscribe). The primary advantage of
AMQP is that it supports a number of messaging patterns (direct, fanout,
publish/subscribe, request/response, etc.). The primary limitation of this
approach is AMQP is less-widely used than HTTP and is more cumbersome for
request/response patterns (requiring a request queue and separate response
queue identified in the request message).

Based on prototyping efforts for request/reply patterns in the system (e.g.
network access to stored data via the OSD, invocation of services) we will use
HTTP. For publish/Subscribe (e.g. notification and event driven processing) we
will use an AMQP brokered messaging solution. For both of these protocols the
system will use JSON to encode the data if the communication meets latency
requirements. If necessary, future work will evaluate encoding alternatives as
needed to improve messaging latency performance.

4.3.4.2 OSD and Data Model Implementation

As described earlier in the Logical View section, the Object Storage and
Distribution (OSD) Mechanism (section 4.2.6.3) provides access to persistent
data for client applications implemented in the languages of the System, while
insulating these applications from the details of the underlying data storage
solution. Key design goals driving the implementation of OSD include the
following:

• OSD data access support should be available in multiple development
languages, including minimally those selected for the System: C, C++, Java,
and Python.

• OSD data access interfaces should be independent of any particular
storage paradigm (relational, key-value, column family, etc.), and any
particular solution (e.g., Postgres, Oracle). The motivation is to minimize
the impact to client applications of any changes to the physical storage
design or implementation.

Within the prototype, the OSD is provides a set of Data Access application
program interfaces (APIs) to support the above goals. The Data Access APIs

Error! Reference source not found.7 Page 53 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
provide application-level access (e.g., search, create, read, update, delete -
SCRUD) to data entities stored in the System's underlying persistence solution
(e.g., relational database).

4.3.4.2.1 Data Access APIs

Two approaches have been investigated to implement the Data Access APIs as
part of prototyping:

1. The preferred approach entails implementing the DAO functions as
network services rather than direct API calls. Under this option, data
access services are defined in a particular language (e.g., Java), which
receives DAO requests via network interfaces and responds with the
retrieved data entities (RESTful interfaces2). A RESTful API is an API that
uses HTTP requests to GET, PUT, POST and DELETE data. REST is an
acronym for Representational State Transfer, which is an architectural
style used for web development. This is a common approach in modern
software systems.

The primary advantage of this approach is that it uses ubiquitous
technologies while minimizing the effort required for clients
implemented with different languages to access persistent data. The
potential disadvantage of this approach is the performance overhead
(latency) introduced by data serialization and network transport, relative
to direct API access. Based on its advantages, this approach has been
selected for implementation in the Executable Architecture prototype
pending further evaluation to establish the sufficiency of latency
performance.

2. A second approach under consideration should the performance of option
1 above prove insufficient is to develop direct DAO library APIs in each of
the languages selected for the System. Two variants of this approach have
been considered:

a. Implement the full set of access methods (SCRUD) using separate
solutions available in each language for the selected data storage
solution. This approach has the distinct disadvantage of requiring
significant effort to develop a separate set of access APIs in each
language added to the System. Another issue is the inherent
difficulty in maintaining a consistent set of interfaces across
languages with different features and libraries supporting access
to a particular storage solution.

2 https://en.wikipedia.org/wiki/Representational state transfer

Error! Reference source not found.7 Page 54 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
b. A possibly more efficient approach entails developing DAO

functions using C or C++, and using a toolset such as SWIG to
generate bindings in the other languages of the System, much like
the approach described above for the data model. As discussed for
the data model, this approach requires the DAO software to be
implemented in C or C++, which are lower-productivity languages
for this purpose relative to Java and Python, and which likely are
at greater risk for obsolescence in the next 20 years of the
modernized Systems lifecycle.

Ultimately, the System may require a combination of the above options; the
service-based approach should be used in cases where the network latency
overhead is acceptable, and the library APIs (implemented manually or via SWIG
interfaces) could be provided as an optimization in other cases. As mentioned
above, the network service model will be developed as part of the Executable
architecture until and unless an insurmountable performance limitation is
established.

4.3.4.2.2 OSD Data Access Implementation Patterns

Implementing the OSD get, store, and subscribe operations in a RESTful data
access layer supports ubiquitous use from a variety of programming languages
while abstracting the selected database technology. Interface implementations
may directly query databases, access relational databases using object relational
mapping (ORM) libraries, query and combine results from multiple databases in
a polyglot solution, etc.

The REST layer allows for web service based data retrieval and persistence using
standard HTTP verbs such as GET, POST, PUT, PATCH, and DELETE against OSD
URIs. HTTP requests contain claim check information. Depending on the
request this information is provided either in the request body or in the URI.
When the OSD provides data over REST it encodes the requested information in
the REST response body. Using a standard data encoding such as JSON further
isolates client applications from the database implementation. Binary encodings
could be used for some data types (e.g. waveforms) if necessary to meet
performance requirements.

OSD notifications to clients require server initiated communication. Though
using web based technologies are based on client initiated communication, these
notifications can still be achieved in several ways: the client can regularly poll a
REST endpoint provided by the OSD mechanism to check for notifications; the
client can expose REST endpoints used by the OSD to post notifications; the OSD
can notify clients over a parallel communications channel such as WebSockets.

The OSD Mechanism's REST layer can be implemented using two primary
patterns: custom defined endpoints and endpoints following Hypermedia as the

Error! Reference source not found.7 Page 55 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Engine of Application State (HATEOAS) principles. Custom defined endpoints
have the advantage of allowing fine grained control of the information provided
by each OSD query. Queries can be created to provide the exact set of
information required by a particular client. The tradeoffs are design complexity
and the potential proliferation of single use endpoints. Mitigating these
concerns requires implementation diligence. Alternately, the HATEOAS
principle can drive OSD endpoint implementations:

Benefits of the HATEOAS approach include strong de-coupling of the server and
client (e.g. the client does not need to know the precise URIs underlying the links
provided by HAL resources, allowing the underlying service calls and URIs to
evolve independent of the client implementation). In addition, HATEOAS allows
clients to follow links and discover information with little prior knowledge of the
underlying model. Negatives of this approach include more service calls,
possibly chains of service calls to follow a series of links in order to retrieve the
desired resource. In a high-latency environment this may have significant
performance impacts.

4.3.4.2.3 Data Storage of Waveforms

A key function of the OSD mechanism is to provide storage and retrieval of
waveform data accumulated from the System's networks of stations. Waveform
data sets differ from other information managed by the OSD in a few important
respects:

• Waveform data sets are much larger than other information managed
within the System, and account for most of the persistent data storage
volume.

• As time series data, waveforms are managed as contiguous time blocks of
unstructured binary data. Query-able metadata about waveforms is
typically managed separately order to support queries.

These characteristics - significant volume and largely unstructured content -
indicate potential advantages of a separate storage approach for waveforms.
Whereas other System data are well suited to traditional database applications
providing full Create/Read/Update/Delete access with sophisticated query
support (e.g. relational database management systems), an alternative storage
approach for waveform data is likely to improve efficiency & performance, as
well as to simplify the overall OSD design.

The current US NDC System manages waveform data as collections of binary flat
files stored on shared data volumes. Metadata describing the waveforms (e.g.
network, station, channel, time range, etc.) are stored in accompanying RDBMS

Error! Reference source not found.7 Page 56 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
records. Synchronization between the primary and backup sites is accomplished
through parallel network distribution of incoming waveform data to both sites.
There are a few important disadvantages with this approach for the modernized
System:

• The modernized System architecture features a horizontal scalability
model based on clustered deployment intended to address future scaling
and availability needs. Management of the current file system approach in
a clustered environment will likely introduce significant access latency
(e.g. using NFS) and/or cost (e.g. using a Storage Area Network).

• The current approach requires custom application software to manage
waveform time block files and provide retrieval of arbitrary time ranges
across files. As discussed further below, there are a number of COTS time
series storage technologies providing equivalent capabilities out of the
box.

4.3.4.2.3.1 Prototyping

As part of an ongoing design effort, the prototyping team has investigated a
number of waveform storage options, including the following:

• Relational Database

• Key/Value Stores

• Time Series Data Stores

The team completed a cursory assessment of a relational database solution, and
as a result of the disadvantages discussed below, quickly shifted focus to an
investigation and prototype of key/value stores. Having completed an initial
prototype, the team is currently investigating time series-focused data store
COTS solutions, which appear to have a number of advantages over key/value
stores for waveform storage.

4.3.4.2.3.1.1 RELATIONAL DATABASE

The primary benefit of this approach is that it enables consolidation of waveform
and other system data into a single storage solution, simplifying the technology
stack. However, as discussed earlier, this likely is not optimal, given the unique
characteristics of waveform data (large volume of unstructured binary data).
Beyond the fact that relational databases offer little advantage for storing
waveform data, the team's investigation identified a number of concerns
associated with this approach, including:

Error! Reference source not found.7 Page 57 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

• Read/write access is generally slower than alternatives. For example,
access latency is necessarily higher relative to direct file system access for
data on disk, and requires more tuning effort to achieve performance
similar to key/value caches for data both in memory and on disk.

• Backups are generally more costly and complicated for large BLOB data
sets in a relational database than for binary data stored in flat files on
disk directly, or distributed in a non-relational system such as a
distributed key/value store.

4.3.4.2.3.1.2 KEY VALUE STORES

In order to investigate key-value stores as an alternative for waveform storage,
the team directed a student intern summer project that surveyed candidate
solutions and ultimately developed an initial exploratory prototype using the
Riak KV store. The initial phase of the project briefly investigated several open
source solutions, including Riak KV, Apache Cassandra, CouchDB and Redis.
Based on its feature set as well as the level of project maturity & prevalence,
documentation quality and ease of provisioning & management, Riak KV was
chosen as an exemplar for prototyping purposes. Key findings include the
following:

• CouchDB utilizes a JSON-like storage format for keyed values, and thus is
optimized for structured and semi-structured values that can be
represented as documents. This format is not well suited for storage of
largely unstructured waveform data.

• Redis historically was designed as an in-memory key-value store, and its
support for persistent distribution/replication of data in a clustered
environment was less well established than other solutions at the time of
the investigation.

• Cassandra was found to be relatively complex to deploy and manage in
previous investigative prototyping work. To avoid associated impacts on
prototyping productivity, the team opted to use Riak KV as a more
accessible solution.

• Riak appears to provide the desired efficiency, horizontal scalability &
high availability features (cluster-based deployment with replication,
automated failure discovery and failover, in-memory caching, etc.). The
team found it straightforward to work with, and relatively simple to
deploy & manage in a clustered environment.

In the second phase of the project, the team developed an exploratory software
prototype using Riak KV deployed on a five-node VM cluster provisioned using

Error! Reference source not found.7 Page 58 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
OpenStack. The Riak cluster was configured with recommended settings
regarding definition of the key space, replication policies, etc. The team
developed tests measuring read and write latency across parameter spaces -
primarily record size, number of records, number of keys - using generated
dummy data. This initial prototyping did not uncover any significant concerns
with the technology, and in general the team was encouraged by the modest
learning curve, deployment/management complexity and available APIs. The
primary limitation of key value data stores as a general approach is that they do
not provide built-in support for time-based operations such as retrieval of a time
ranges crossing stored time blocks. This key capability requires custom software
to be developed around the KV store APIs.

4.3.4.2.3.1.3 TIME SERIES DATA STORES

The team recently identified a number of time series-focused data storage
solutions that will be considered in follow-on work. In principal, this technology
seems optimally suited to the problem space, given the time-ordered nature of
waveform data. An obvious advantage these technologies offer is support for
time-based operations, including time range queries. Open source projects of
interest in this category include: InfluxDb, Graphite, Druid, Riak TS, etc.

4.3.4.2.3.2 Follow-on Work

For the problem space of waveform storage, the immediate focus of the team
moving forward is to evaluate time series database options. Based on the
outcome of that investigation, the team will propose a design solution based on
either key-value or time series data storage technologies as part of the
architecture runway to support early product increments.

4.3.4.3 Processing Sequences

As described in Section 4.2.6.2, the System will provide the capability to execute
pre-defined sequences of automated processing via the Processing Sequence
Control mechanism (PSC). Key design goals driving the implementation of this
capability include the following:

1. The System should provide a notation and toolset enabling the definition
and deployment of Processing Sequences, including complex
orchestration logic - e.g., parallel (fork/join) and repeated processing
flows (i.e., loops), conditional flow execution, and nested sequence
execution (i.e., one sequence invoked from within another).

Error! Reference source not found.7 Page 59 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
2. The Processing Sequence Control mechanism should be capable of

delegating processing defined in sequences to external applications and
plugins implemented in the languages approved for the System.

In order to achieve the first goal, the prototyping team considered a number of
alternative designs:

1. Distributed orchestration of processing components through runtime
configuration of communication pathways between components based on
a declarative (e.g., XML) syntax - under this approach, a sequence would
be defined by linking the output channels (e.g., AMQP queues) of
components to the input channels of other components using channel
identifiers. Note that an approach similar to this one is currently used by
the IDC system. The primary disadvantage of this approach is the
difficulty of configuring complex orchestration logic such as loops and
nested sequence execution via input/output coupling. For this reason, the
approach was not included in the prototypes.

2. Centralized orchestration using an open-source COTS execution engine
capable of directing components based on pre-defined processing
sequence definitions. Various open-source technologies were evaluated
for this approach, including Spring Batch and several Business Process
Modeling and Notation (BPMN) tools. Based on the evaluation, the Activiti
open-source BPMN engine was selected for use in the prototype. Activiti
is an open-source Java runtime engine that executes processing
sequences defined using the BMPN 2.0 standard notation. Advantages of
Activiti include the following:

• All of the orchestration constructs described in design goal 1
(fork/join, loops, conditional execution, nested sequences, etc.) - as
well as others - are supported.

• Processing sequences may be defined using either the BPMN 2.0
visual modeling notation (via an Eclipse plugin) or the XML notation.

• The engine maintains the execution state of each processing sequence
in a database, and supports transactions within processing sequences
(e.g., including rollback upon failure).

For more information on the Activiti-based PSC design, see 5688: The System shall provide the
System User the capability to remotely access required user interface functions on the OPS
Subsystem from a remote connection over a secure connection.

5689: The System shall provide access to all Analyst capabilities from a remote location over a
secure connection.

Error! Reference source not found.7 Page 60 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

5690: The System shall be comprised of discrete subsystems each configured to support its mission,

including: 1) Operational (OPS) Subsystem; 2) Alternate (ALT) Operational Subsystem; 3) Testbed

(SUS/TST) Subsystem; 4) Development (DEV) Subsystem; 5) Continuous

5731: The ALT Subsystem shall be a copy of the OPS Subsystem in software and hardware not

physically collocated with OPS.

5738: The System shall reuse suitable existing software where practical.

5739: The System shall use open-source software whenever possible.

5740: The System shall use open-source software when both open-source and commercial software

are available.

5766: The System shall support at least 1000 Authorized External Users.

5767: The System shall support each Authorized External User requesting up to 4GB of data per

day.

5768: The System shall support at least 30000 requests for data and products per day.

5831: The System shall use relational database management systems that support ACID

transactions, referential integrity and fine grained locking.

5832: The System shall use a distributable open source database for Standalone Subsystems.

6442: The Standalone Subsystem software distribution shall be available for use by any authorized

party without export restrictions.

Error! Reference source not found.7 Page 61 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
Appendix B. BPMN For Processing Sequence Control.

3. Centralized orchestration via executable scripts defining processing
sequences in a language such as Python. This approach replaces the
declarative processing sequence notation and execution engine (such as
Activiti) with an executable script. The primary advantage of this
approach is that it provides a simpler, less complex solution (relative to
e.g., BPMN engines) supporting all of the orchestration constructs
identified in design goal 1. The disadvantages of this approach include the
following:

• Processing sequences are defined imperatively rather than
declaratively, and there is no visual modeling notation.

• Execution state tracking and transaction support are not included by
default and would introduce significant complexity to add.

In order to achieve the second design goal above (cross-language support), the
Executable Architecture prototypes focused on network-based communication
between the PSC and Control Class applications (e.g., signal detectors) running in
separate processes. The two technology pairs discussed in section 4.2.6.4 Inter-
Process Communication (HTTP/JSON and AMQP/Thrift) were implemented to
provide language-agnostic messaging and data encoding as part of the
prototypes. In each case the PSC delegates processing to external applications
by sending a request message with encoded data reference, configuration, and
parameters. The external application receives the message, performs the
requested processing, and responds with encoded result data and status.

Recall the primary limitation of HTTP/JSON approach is that HTTP is not well
suited to patterns other than request/response (e.g., publish/subscribe). This is
not truly a limitation given a centralized approach to the PSC mechanism where
a central orchestrator (Activiti) delegates processing via request/response.
However, under an alternative decentralized PSC design (e.g., where
orchestration is achieved via configurable queues directly connecting
applications), HTTP is less well suited.

The centralized PSC design implemented in the prototype (Activiti) uses
request/response exclusively for communication between the PSC and target
applications. For this reason and due to its relative simplicity and flexibility, the
HTTP/JSON technology pair has been selected as the preferred approach for
PSC/application communication within the Executable Architecture prototype.
AMQP/Thrift may be considered as an alternative in future prototyping work
should the comparative efficiency of this approach become compelling.

Error! Reference source not found.7 Page 62 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.3.4.4 User Interface Frameworks

Another critical area of investigation for Executable Architecture Prototyping is
evaluating options for the implementation of the System user interface.
Prototyping activities have evaluated three primary options for the
implementation of the System user interface:

1. Rich-client Java application

2. Browser-based web application

3. Natively-deployed web application

Early prototyping activities explored the development of a rich-client Java
application using the NetBeans Rich Client Platform (RCP). This prototype
heavily leveraged capabilities provided by NetBeans, including its modular
plugin framework and support for user-customizable display layout and data
synchronization across displays. However, UI design options are somewhat
limited by standard Java look and feel. Moving beyond those design options
would require intensive custom rendering, which would be expensive.

More recent prototyping activities explored development of the System user
interface using web technologies (e.g., JavaScript, HTML, CSS) deployed via a
standard web browser. Benefits of a web-based UI include more control and
freedom over the UI design and the ability to leverage the momentum of web
development in industry by making use of open-source JavaScript frameworks
that support UI development. The key additional benefit of a browser-based
web UI is a simplified deployment and upgrade model, which is likely more
advantageous for some use-cases (e.g., support for Authorized External Users)
than for others (e.g., core analysis capabilities).

A third UI implementation option is a natively-deployed web application, which
implements the UI using the same web technologies mentioned above but
deploys the application natively to dedicated workstations instead of via a
browser. Prototyping activities have explored the use of Electron, a framework
for deploying cross-platform native applications using web technologies. The
benefit of this hybrid approach is the ability to leverage modern web
technologies while maintaining the benefits of a desktop application, including
access to the filesystem and native menus and notification mechanisms.
However, this approach requires a more traditional installation and upgrade
model.

With all three UI implementation options, the proposed back-end System
architecture remains the same. The UI accesses Control classes via RESTful web
service calls to a server back-end. Data synchronization occurs via WebSocket
technology, a web standard allowing for full-duplex communication between the

Error! Reference source not found.7 Page 63 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
server and UI client. Using WebSockets, data is pushed to the UI, which then
updates itself accordingly. In all cases, web-services could be forward-deployed
to the workstation, as needed, to improve System performance. Thus, selecting
the best UI implementation approach is not influenced by the back-end
architecture, but rather, is based entirely on the benefits of one UI-specific
technology stack over another.

Key criteria for selecting the UI implementation approach include:

• Interactive performance: Any viable UI technology stack must provide
acceptable performance for Analysts under both typical and stressing
conditions. Since the back-end implementation of web services is the
same for all proposed UI implementation options, this criterion is focused
strictly on performance in the UI itself. Examples of performance
assessments include the ability to load and interact with large amounts of
waveform data and the ability to synchronize data across multiple
complex displays (e.g., an event list, waveform display, map display, etc.)
without degrading performance for key, time-critical operations.
Prototyping activities have explored the feasibility of holding large
amounts of data in-memory in the browser. In some cases, waveform
segments can be loaded on-demand from the server; however, in many
cases, the UI will need to store a large number of waveforms in memory.
Using a 64-bit build of modern browsers, initial prototyping activities
found no performance degradation when dealing with large heap size,
with the following caveats: Chrome restricts each tab to 4GB of memory
for security reasons; however, this limit can be increased using runtime
flags. Chrome also restricts GPU-render processes to a larger 16GB limit,
which is where the WebGL-powered waveform display would reside. The
Electron framework, which is built on Chromium, behaves similar to
Chrome in that it requires runtime flags to increase heap size. Firefox
does not appear to have the same heap size restrictions. Thus far, these
performance assessments indicate that UI web technologies can provide a
user experience that is equally or more performant that a rich-client Java
application.

• Saving and restoring user-defined workspaces: A key requirement of
the System is that end-users have the ability to organize their displays
into custom workspaces that can be saved and restored across user
sessions. This requirement is well-supported by the NetBeans RCP, as
demonstrated by early prototyping activities. In terms of web-based
alternatives, we have explored Golden Layout, a third-party JavaScript
framework that provides similar layout management capabilities within
the confines of a browser. Golden Layout supports opening, closing,
dragging, dropping, and resizing individual tabbed displays within a
single browser window. Additionally, tabbed displays can be undocked

Error! Reference source not found.7 Page 64 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
into a separate browser window, which maintains communication with
the parent window. This technology is very promising for supporting
layout management requirements; however, it does have limitations. For
instance, the ability to save and restore the placement of displays across
multiple screens is limited by current browser technology. This risk could
likely be mitigated by using Golden Layout in a natively-deployed
application (e.g., Electron) rather than deploying via the browser.
Regardless of the deployment model, Golden Layout is the leading
candidate for web-based layout management support; however, the code
base will require significant refactoring to fully support our robust
operational use-case.

• Integration of GIS capabilities: A goal of the modernization effort is to
provide robust GIS capabilities that are well-integrated with the rest of
the application. In recent years, many industry leaders in GIS (e.g., Google,
ESRI, AGI) have moved decidedly in the direction of web-based tools,
either instead of or in addition to their traditional thick-client offerings.
The web-based GIS tools available today are improving rapidly. Although
they are currently less mature than their thick-client counterparts, this is
likely to change as demand increases and industry leaders continue to
devote resources to their web offerings. A web-based GIS technology
stack might be implemented using a combination of open source tools
(e.g., GeoServer, Cesium, OpenLayers, Turf.js) or perhaps via the ArcGIS
for Server platform. For a rich-client Java implementation, NASA World
Wind is a likely candidate for map-based visualization. Regardless of the
chosen technology stack, GIS capabilities will be implemented based on
OGC standards (e.g., Web Feature Service, Web Map Service, Web
Coverage Service).

• Ease of deployment and upgrades: As mentioned previously,
accessibility and ease of deployment are key benefits of a browser-based
web UI. The ability to access the System user interface via a standard web
browser means that the application doesn't need to be installed on
individual workstations and that upgrades can be deployed once to a
server and made available immediately to all users. However, this model
is limited to a browser-based deployment, and the benefits would be
diminished for users without network connections (e.g., on a standalone
system) and in cases where web services need to be forward-deployed
(and thus installed on individual workstations) to meet performance
needs.

• Scalability, complexity, and maintainability of the code base: This
criterion combines a number of factors related to the overall complexity
of the UI code base. This includes the learnability of languages and
technologies, the availability of resources and an active community of

Error! Reference source not found.7 Page 65 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
developers to learn from, and the availability of robust development and
testing tools. From a code complexity standpoint, a thick-client Java
implementation is less risky due to its object-oriented nature and well-
established patterns. As mentioned previously, a key benefit of web
technologies is the ability to leverage the momentum of literally hundreds
of available third-party JavaScript libraries and frameworks. However,
this is also a risk of web technologies - complexity of the code base
increases dramatically with the need to integrate a large number of
disparate third-party libraries into one coherent and maintainable code
base. The key to mitigating this risk is to accept the reality that some of
these third-party libraries will need to be replaced during the multi-year
development cycle of the application. If the UI architecture is designed
with this eventuality in mind, then the code can be organized so that UI
libraries can be replaced more easily without negatively impacting the
rest of the UI code or the application logic layer. JavaScript, as a dynamic,
untyped language, adds additional concern in terms of the complexity,
scalability, and maintainability of large-scale code bases. Prototyping
activities have begun to mitigate this risk by making use of Typescript, a
typed superset of JavaScript developed by Microsoft, which is designed to
make the management of large-scale JavaScript applications easier.

UI prototyping activities have focused on working enough with JavaScript and
available third-party libraries to make an informed decision about the
performance, interaction model, and complexity of code for a large-scale system.
To date, the key third-party libraries that we have used for UI prototyping
include:

• React: Supports efficient update and rendering of UI components based
on state. Developed by Facebook and used widely in industry. A likely
candidate for the foundational framework of the System UI.
(https://facebook.github.io/react/)

• Golden Layout: A multi-window layout manager for web applications.
Supports RCP-like look and feel inside the browser; however, the library
will require rework to fully support our robust use-case.
(https://www.golden-layout.com/)

• Cesium: An open-source 2D/3D virtual globe implemented with WebGL.
Developed by AGI. Leading candidate for web-based map visualization
because it is one of only a few options that currently support 3D
rendering. (https://cesiumjs.org/)

• ag-Grid: A data grid library that provides robust capabilities for the
display of tabular data. Provided an initial test case for wrapping third-
party tools for easy replacement in the future. (https://www.ag-
grid.com)

Error! Reference source not found.7 Page 66 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

• Redux: A library for managing complex application state. Used for initial
investigation of undo/redo capabilities in the UI. (http://redux.js.org)

• Electron: A framework for creating native applications using web
technologies. A likely candidate for deployment for scenarios where
browser-based deployment is not viable. (http://electron.atom.io/)

• Typescript: A typed superset of JavaScript developed by Microsoft. A
likely candidate for use since it has already made our relatively small UI
prototyping code base easier to manage.
(https://www.typescriptlang.org/)

Based on the criteria defined above, and on what we have learned through
prototyping activities thus far, we believe that the benefits of UI web
technologies outweigh the risks. Thus, the proposed path forward is to develop
the System user interface using web technologies, meaning that the core
programming languages for UI development will be a combination of JavaScript,
HTML, and CSS. Third-party libraries and frameworks will be leveraged
whenever possible to support the development of robust and consistent displays
and also to support the maintainability of the code base.

Ongoing prototyping activities will continue to buy down risk associated with a
browser-based deployment (e.g., by resolving issues associating with user-
defined workspaces and by continuing to explore performance considerations,
GIS capabilities, and tools to improve code maintainability and developer
efficiency). If a browser-based deployment proves inviable for some use-cases
(e.g., core analyst capabilities), then we will continue to develop a web-based UI
but deploy it natively to individual workstations. This approach allows
prototyping activities to move forward with the evaluation and selection of
specific web technologies, since the same technologies will be used regardless of
the eventual deployment model. Additionally, it is likely that the same code base
could be deployed both natively and via the browser under different usage
models without significant extra development effort.

4.3.4.5 Undo - Redo Implementation

Undo-redo provides the means for Analysts to quickly recover the previous state
of an Event or a Signal Detection. Associated with web-based user interface
prototyping, the prototyping team investigated the undo-redo capabilities
inherent in the Redux third-party library. Prototyping used Redux to capture
and distribute the state of display variables to synchronize multiple distinct
displays. Redux also offers some capability to save previous display state by
storing and manipulating snapshots of state in memory. Redux maintains an
underlying immutable state structure by creating a new state object for each
state transition. The performance impact of this approach is low as most of the
new state simply contains references to previous state objects, except for the

Error! Reference source not found.7 Page 67 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
modified sections. A limitation of this approach is the state structure is confined
to the user interface and any state transitions must be duplicated on the server
side. Further work will focus on an approach to maintain consistency between
the user interface and the server side while providing required user interface
performance.

4.3.4.6 Provenance Implementation

Requirements and use cases indicate the System must capture, index, store, and
query provenance information describing which results were created in the
System, when they were created, and how they were created. Developing a
useful provenance framework requires anticipating future uses of the
provenance information in order to capture and store the information necessary
to respond to those queries. The architecture team has considered two primary
approaches for capturing and storing provenance information:

1. Event sourcing

2. Relational database schemas

The prototyping team developed an Executable Architecture prototype to
evaluate the event sourcing3 pattern. Storing provenance in predefined
relational database schemas was not prototyped as the team has extensive
experience developing applications which interact with relational databases.

Event sourcing is a pattern where a series of domain events record all changes to
object state and where the object state can be recreated from those domain
events. The pattern allows recreation of an object's state at any point in its
history without having to explicitly store each of those states.

Initial prototyping activities surveyed the available event sourcing libraries. The
selection of Java as the primary implementation language limits the viable
options to:

• Axon Framework: Axon is a Java distributed programming framework
providing a programming model based on Command Query
Responsibility Segregation (CQRS4) and event processing patterns. Event
processing, messaging, and storage are core concepts in Axon. Axon's
APIs follow Domain Driven Design nomenclature so they fit well with
theoretical discussions of event sourcing found in articles and books.
Axon supports a variety of database technologies including PostgreSQL
and MongoDB.

3 http://martinfowler.com/eaaDev/EventSourcing.html
4 http://martinfowler.com/bliki/CQRS.html

Error! Reference source not found.7 Page 68 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

• Akka Toolkit: Akka is a distributed programming framework based on
the actor model. Akka supports event sourcing using persistent actors.
Each actor is responsible for creating and storing events corresponding to
the results of commands issued to the actor. Event sourcing is a means of
persisting actors but is not fundamental to the Akka programming model.
As such, Akka was eliminated from further Executable Architecture
prototyping.

The Axon event sourcing prototype supports the following:

• Experience implementing the CQRS and Event Sourcing patterns:
Increasing team familiarity with the concepts and complexity introduced
by the CQRS and Event Sourcing patterns, including using separate data
representations for command handling and query objects, exclusively
using domain events to update aggregate objects in response to
commands, and communicating state changes via domain events.

• Axon performance evaluation: evaluating the performance of Axon's
command handling, event handling, event sourcing, and CQRS
implementation in a distributed environment. This test uses a Python
script sending requests to REST controllers to study Axon's command
handling throughput for both breadth (many event sourced Aggregates)
and depth (event sourced Aggregates with many corresponding domain
events) of domain event histories. The performance test is subjective
since it is not compared with a baseline performance metric.

• Build/Adopt framework decision: determine if the Axon framework is
suitable for use in System development. Since Axon is the only feasible
framework discovered during the event sourcing library survey the
alternative to using Axon is develop a custom CQRS and event sourcing
framework. The custom framework could either be based on Axon or
developed from scratch.

Figure 4-9 shows the structure of the Axon event sourcing and CQRS prototype.
The prototype uses the most recent release of Axon, version 2.4.4. The
prototype runs on a 5 node OpenStack cluster. The user interface is a Python
script that makes requests to REST endpoints using JSON over HTTP. The REST
controllers use the requests to create Command objects and publish them to a
command bus which routes Commands to the appropriate Command Handler.
Axon provides horizontally scaled command handling using JGroups clustering
to distribute the command bus. Command Handlers invoke operations in the
Aggregate classes to run algorithms, update values, etc. Aggregates for Event,
Event Hypothesis, Signal Detection, and Signal Detection Hypothesis exist in the
prototype. Each Aggregate is event sourced so Domain Events record changes to
their state. The Domain Events are stored in the MongoDB event store and are
published to the Event Bus for delivery to Event Handlers via RabbitMQ

Error! Reference source not found.7 Page 69 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

o

Ul

messaging. Axon also horizontally scales event handling. Axon implements
these clusters using RabbitMQ messaging. The Repository is an abstracted data
store for the Aggregates. The Repository is responsible for managing the
Domain Event to Aggregate mapping and can be used to recreate Aggregate state
by replaying Domain Events.

In CQRS the portion of the System responsible for handling Commands is
separate from the portion of the System responsible for responding to queries.
The top portion of Figure 4-9 is responsible for receiving, processing, and
ultimately storing the results of commands (i.e. Domain Events) in the MongoDB
Event Store. However, since the Event Store provides minimal query power a
separate PostgreSQL database maintains a separate view of the information in a
format better structured for querying. This is the query response side of CQRS.
The prototype uses domain event handlers to update PostgreSQL as domain
events are published to the event bus. Applications such as GUIs and Control
classes can query the database for the results of command processing.

Processing
Requests

(I-DTPIISON)

v,

o

Create and
publish

Commands

►

Event Streams

(one per Aggregate)

Mongodb

s
n
g
 p
u
e
w
w
o
 

e
H
 p
u
e
w
w
o
 

4—
Command

Domain Model

M-M

Z1Aggregates

Domai Events

Event Bus

AMQP
(rabbitmq)

Domain
Events

► Event Hander

Spring Boot App

Queries
frinpfisono

Query Domain

Model

onbin Events

( Event Busi) ► Event Hander

Figure 4-9. Implementation View Axon framework event sourcing prototype

III▪ State view

111

Spring Boot App

Overall the prototyping team found Axon 2.4.4 to provide a flexible and
understandable API. Key framework components such as the domain event
store, messaging system, and Aggregate storage have extensible
implementations based on Java interfaces. Axon provides default
implementations using common technologies such as relational storage via JPA,

Error! Reference source not found.7 Page 70 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
document storage via MongoDB, and AMQP messaging via RabbitMQ. In the
event these technologies need to be replaced with alternate implementations the
team has confidence the changes can be made with minimal impact to the
remainder of the Axon framework. Additionally, since Axon defines annotations
allowing it to be used in Spring Boot applications it integrated easily in the
prototyping environment.

The prototyping team has several concerns with the Axon framework:

• JGroups distributed command bus: Axon uses JGroups to distribute the
command bus and AMQP to distribute the event bus. Axon's choice to use
JGroups for the command bus introduced dependence on an additional
third party library. While stable, JGroups is an older technology. If it
becomes necessary to replace JGroups possible alternatives include
implementing a new distributed command bus using a different
technology (e.g. AMQP messaging) or implementing load balancing at the
REST endpoints (e.g. using NGINX) rather than within Axon.

• Limited development team: Reviewing Axon's GitHub repository reveals
it is primarily developed by one person with significant efforts from one
or two other contributors. The implication is long term maintenance and
support of Axon may be limited. If long term support is unavailable the
development team will have to maintain or replace Axon.

• Evolving API: The prototype uses the current release of Axon, version
2.4.4, but this version is anticipated to be obsolete in the near future
when Axon 3.0 is released. This release is known to have some
architectural differences from Axon 2.4.4. While the team's experience
and understanding of CQRS and event sourcing in Axon will remain
valuable, the move to Axon 3.0 will require the team to become familiar
with new APIs when it is released.

• Documentation and support: Axon has some documentation online but
much of it is high level enough that it provides more theoretical than
practical information. Axon has some support via Google groups. While
timely, help is generally provided by the primary Axon developer.

After evaluating the Event Sourcing prototyping results, the Architecture Team
selected to store provenance information along with the processing results
embedded in the relational database schema. This approach requires
identification of the provenance information at development time. While the
Axon implementation proved well designed and supported adequate
performance, the team determined that the additional complexity of separate
storage of processing results from provenance information, multiple storage
solutions, and replaying domain events to retrieve current state was a risk for
developing and maintaining the System. Additionally, the team decided that the

Error! Reference source not found.7 Page 71 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
identification of provenance information during implementation was adequate
to meet requirements.

4.4 Process View

The Implementation View specifies how Analysis Classes are physically
organized at development time to support development. The Process View, on
the other hand, specifies how Analysis Classes (Control classes in particular)
execute within processes at runtime to achieve concurrency in the system.

The System is fundamentally distributed. From the Process View perspective,
the system is essentially a large set of cooperating processes and threads spread
across several processing nodes. A distributed architecture such as this provides
many advantages, including:

• The ability to take advantage of multiple CPUs within a node and across
multiple nodes to perform activities in parallel.

• The ability to react rapidly to certain types of external stimuli, including time.

• Increased CPU utilization, by allocating the CPU to other activities while
some thread of control is suspended waiting for some other activity to
complete (e.g., access to some external device, or access to some other active
object).

• The ability to better prioritize activities.

• The ability to better separate concerns between different areas of the
software.

• Higher system availability.

• Increased scalability in order to meet future unknown requirements.

• Ability to monitor individual processes to evaluate system status and
performance.

There are limitations in distributed architectures as well. In general, such
systems are harder to design, build and test. The design is sensitive to inter-
process communication and too much inter-process communication can hurt
system performance. For a system with data processing requirements and
several operators using the system in parallel however, the benefits outweigh
the limitations.

4.4.1 Use of Multi-Threading

The System will take advantage of the underlying multi-processor platform
through the use of multiple processes and multi-threading within processes.
Future prototyping efforts will define how multi-threading will be implemented
within the system.

Error! Reference source not found.7 Page 72 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.4.2 Process View Mappings

The Process View defines the processes that collectively execute the system and
how Analysis Classes are mapped to those processes. When considering the
Process View, it is often useful to also consider the nodes on which the various
processes execute—a focus of the Deployment View. Analysis class to Process
mappings will be defined in future iterations.

4.5 Deployment View

4.5.1 Deployment Considerations

The initial assumption for the System is that all processing nodes will be x86-
based processors running the Red Hat Enterprise Linux OS. The processing
nodes will run on virtualized hardware. Virtualization is employed for several
reasons, including:

• Flexibility in node provisioning - Resources such as CPU and memory can be
reassigned among virtual nodes without changing the underlying hardware.

• Simplification of hardware maintenance - Virtual nodes can be reassigned
among hardware units to allow maintenance on faulty units.

• Simplification of application upgrades - Image-based installation bundles of
application and OS software can be created and installed together. Virtual
nodes can be configured quickly to run different software releases.

The design of the system architecture seeks to minimize the dependencies
between the application software and the underlying computer hardware to
provide the capability to upgrade to newer hardware, as it becomes available.
The System is long-lived therefore the capability to upgrade to later versions of
hardware is highly desired.

The term compute resource has been used to mean any physical or virtual
component of limited availability within the System, and includes but is not
limited to the following:

- Nodes,

- Workstations,

- Servers, and

- Compute Devices.

Virtualization and container technology are being applied to the development
process to ease development, testing, integration and delivery. Containers will
be evaluated as a method to facilitate software deployment.

Error! Reference source not found.7 Page 73 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

4.5.2 Subsystems

The System is comprised of several subsystems each configured to meet its
assigned mission. The primary mission is to monitor compliance with existing
and future nuclear weapons testing treaties. This mission is performed by one of
two subsystems - each capable of supporting the primary mission - installed at
geographically separate locations to provide survivability in disaster scenarios
such as weather or power outages. The subsystem located at the primary
operational location is called the Operational (OPS) Subsystem and the other
subsystem is called the Alternate (ALT) Subsystem. Only one of these two
subsystems holds the primary mission at any given time, while the other system
serves as the backup. Remote access to either the OPS or ALT Subsystems will
also be available from a set of workstations at an independent location to
provide coverage by accessing either the OPS or ALT subsystem. The Training
Subsystem provides analyst training to operations personnel. The Standalone
Subsystem contains a subset of the primary subsystem features in functionality,
but operates independently.

Additional Subsystems facilitate software and hardware maintenance. The
Sustainment/Test (SUS/TST) Subsystem provides testing, verification, and
validation for upgrades. The SUS/TST Subsystem along with the Sustainment
Alternate (SALT) Subsystem, provides a testing environment for subsystem
synchronization and the transfer of operations from the OPS to the ALT. The
Development (DEV) Subsystem and the Continuous Automated Testing
Subsystem (CATS) provide development and testing of software upgrades.

Error! Reference source not found.7 Page 74 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.

OPS Subsystem

«node.
OPS Data
Acquisition
Partition

«node.
OPS Data

In Processing
Partition

ALT Subsystem

node •
ALT Data
Acquisition

«node.
ALT Data

in Processing
Partition

susgsr Subsystem

«node.
SUS/TST Data
Acquisition
Partition

•node.
SUS/TST Data

In Processing
Partition

SALT Subsystem

•node.
SALT Data

IA Acquisition
Partition 1

•node.
SALT Data

El Processing
Partition

«node.
EIDEV Subsystem

«node»
In Training Subsystem

•node.
OCATS Subsystem

•node.
In Standalone Subsystem

Figure 4-10. Deployment View

Error! Reference source not found.7 Page 75 of 83



ARCHITECTURAL REPRESENTATION ERROR! REFERENCE SOURCE NOT FOUND.
The deployment view resources needed to implement the functional
requirements will be determined from a combination of experience with the
prior developed and fielded system, analysis of the functional requirements in
the System Specification Documents.

The compute resources will be logically decomposed into sets designed to
support the functional requirements of each subsystem.

4.5.3 Device and Network Interfaces

This section describes device and network interfaces that have an impact on the
system architecture. This section will describe significant devices and network
interfaces in future iterations.

4.5.4 Deployment View Mapping

The Deployment View maps the processes defined in the Process View to the
hardware processing nodes of the Deployment view. The Process-to-Node
mappings will be defined in the Architecture Document in future iterations.

4.5.5 Procurement Considerations

The operational installations are responsible for the procurement requirements
dealing with procurement procedures and issues which will be addressed on a
site-by-site basis by personnel charged with those responsibilities.

4.5.6 Configuration Management

An integrated Configuration Management (CM) system shall be used to track the
history of delivered items as well as the overall configuration of each system
release. A configuration in this context includes items such as the System
application (executables, libraries, and configuration files), the VMs including the
installed operating system (OS) (VM provisioning, OS executables, libraries, and
configuration files), network equipment configuration files, and associated
documentation (on-line help). The full set of configuration items shall be
documented in the System Configuration Management Plan.

Error! Reference source not found.7 Page 76 of 83



APPENDIX A. SPECIFICATIONS ERROR! REFERENCE SOURCE NOT FOUND.

5 APPENDIX A. SPECIFICATIONS

The following System specifications shall be satisfied by the System Architecture:

Common Specifications 

2028: The System shall use a common object interface (data model and methods) for data.

2042: The System shall store automatic and interactive processing parameters in the database.

2043: The System shall store automatic and interactive processing results.

2139: The System shall report failures, warnings and notifications using a common messaging

infrastructure.

2218: The System shall make use of commercial off-the-shelf (COTS) and open source software

where possible.

2219: The System shall use commercial off-the-shelf (COTS) and open source software with a

defined upgrade path.

2220: The System software shall be written using a minimum number of programming languages.

2224: The System shall implement dates and times that include leap years and seconds.

2226: The System shall use year 2038 epoch rollover compliant date formats.

2233: The System software shall be maintained and controlled via configuration management

software.

2262: The SUS/TST Subsystem shall be a functionally redundant copy of the OPS Subsystem.

2317: The System shall maintain a mission profile operating 52 weeks a year, 7 days per week, and

24 hours a day.

2331: The System shall store on the System all existing data and five (5) additional years of data.

2332: The Training Subsystem shall provide storage with sufficient capacity to accommodate thirty

(30) days of multi-phenomenology waveform data for stations available on the OPS Subsystem.

5703: The System shall provide the System User the capability to export the current view to a

standard graphic format (e.g. TIFF, JPG or PNG)

5725: The System shall use date formats with four digit years.

Error! Reference source not found.7 Page 77 of 83



APPENDIX A. SPECIFICATIONS ERROR! REFERENCE SOURCE NOT FOUND.

IDC Only Specifications

5688: The System shall provide the System User the capability to remotely access required user

interface functions on the OPS Subsystem from a remote connection over a secure connection.

5689: The System shall provide access to all Analyst capabilities from a remote location over a

secure connection.

5690: The System shall be comprised of discrete subsystems each configured to support its mission,

including: 1) Operational (OPS) Subsystem; 2) Alternate (ALT) Operational Subsystem; 3) Testbed

(SUS/TST) Subsystem; 4) Development (DEV) Subsystem; 5) Continuous

5731: The ALT Subsystem shall be a copy of the OPS Subsystem in software and hardware not

physically collocated with OPS.

5738: The System shall reuse suitable existing software where practical.

5739: The System shall use open-source software whenever possible.

5740: The System shall use open-source software when both open-source and commercial software

are available.

5766: The System shall support at least 1000 Authorized External Users.

5767: The System shall support each Authorized External User requesting up to 4GB of data per

day.

5768: The System shall support at least 30000 requests for data and products per day.

5831: The System shall use relational database management systems that support ACID

transactions, referential integrity and fine grained locking.

5832: The System shall use a distributable open source database for Standalone Subsystems.

6442: The Standalone Subsystem software distribution shall be available for use by any authorized

party without export restrictions.

Error! Reference source not found.7 Page 78 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.

6 APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL

A number of COTS or open-source solutions have been developed around BPMN,
including tools (e.g., Eclipse plugins) for defining BPMN Processing Sequences as well
as engines that support the execution of Processing Sequences based on their BPMN
descriptions. Activiti is one of the more prominent open-source BPMN runtime
solutions, with an active development community and strong user base.

The primary BPMN elements used to define Processing Sequences in the Executable
Architecture prototype are described below.

1. Activities represent processing work to be completed as part of the sequence.
Activities may be either atomic or compound, as represented in the sub-types
below. Activities may be executed repeatedly (i.e., in a loop), conditionally (see
Exclusive Gateway), in parallel (see Parallel Gateway), and at specific times or at
specific intervals (see Timer-related elements).

a. Tasks represent atomic processing actions within the sequence. A
common task example is the invocation of a processing service (either
within the local process space or via a network service interface).

b. Sub-Processes represent nested processing sequences invoked from
within an enclosing sequence. Sub-Processes are used to define
compound processing flows (potentially including activities, gateways,
sequence flows, events, etc.) within a processing sequence

c. Call Activities are used to represent the invocation of one processing
sequence from within another, where control is transferred to the
invoked sequence during its execution.

2. Sequence Flows define the flow relationships between activities, gateways,
events, etc. as well as the order of execution. Sequence flows represent the
control flow, rather than flow of data between elements. The Processing
Sequence Control mechanism supports the passing of data and configuration
information between activities within a sequence; however, data interfaces are
not part of the processing sequence definition. These interfaces are defined as
part of the interface contract for services that implement the defined Activities.

3. Gateways are used to define conditional and parallel execution of Activities
within a processing sequence as represented in the subtypes below.

a. Exclusive Gateways define decision points within a processing sequence
that control the execution of one or more alternative activities based on
evaluation of a Boolean expression. Exclusive Gateways allow only a
single sequence flow to be executed; the first sequence flow (in the order

Error! Reference source not found.7 Page 79 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.
defined) for which the gateway condition evaluates to true will be
executed.

b. Inclusive Gateways also define decision points within a processing
sequence that control the execution of one or more alternative activities
based on evaluation of a Boolean expression. Unlike Exclusive Gateways,
Inclusive Gateways allow multiple sequence flows to be executed; all
sequence flows for which the gateway condition evaluates to true will be
executed.

c. Parallel Gateways define parallel execution paths without conditions. All
outgoing sequence flows from a parallel gateway are executed in parallel.
Parallel Gateways are used to represent both the divergence and
synchronizing convergence points within a processing sequence. All
sequence flows incoming to a Parallel Gateway will be executed before
the single outgoing flow is executed.

d. Event-Based Gateways define parallel execution paths that depend on the
occurrence of events in the system (see the description of Events for
more information.

4. Events represent occurrences within the system that affect the execution of a
processing sequence. Example events include timer firings, receipt of messages,
error notifications and other named signals. Events are typically used to control
execution flow - i.e., where flows are executed only in response to one or more
events.

Parallel
Gateway

Exclusive
Gateway

•

Inclusive
Gateway

mer
Event

•• 
......... • ..• • . • . •

.....................................

Call activity

CP
Seivice Task

Event sub Process

•

Service Task

Service Task

Figure 6-1. Example BPMN 2.0 Visual Modeling Notation

Error! Reference source not found.7 Page 80 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.

<?xml version="1. O. encoding="UTF-8.?>

20 <def initions xmins=Thttp://inmr.omg.orgispec/BPIIN/20100524/MODEL• xmlns: xsi=Thttp://winr. w3.org/2001/XMLSchema-instanc

30 <process id= •myProcess• name="My process• isExecut able= 'true.>

4 <start Event id= .starteventl • name=•Start•></stariEvent>

5 <exclusiveGateway id=•exclusivegatemayl• name="Exclusive Gateway•></exc lusivelat eway>

6 <serviceTask id= .servicetask3. name=•Service Task•></serviceTask>

7 <callActivity id=•callactivityl. name=•Call activity"></callActivity>

80 <subprocess id=•eventsubprocessl• name=•Event sub Process. triggeredByEvent= 'true.>

9 <inclusiveGateway id="inclusivegatewayl• name="Inclusive Gareway.></inclusivelateway>

10 <serviceTask id=wservicetaskl" name="Service Task•></serviceTask>

<serviceTask id= wservicetask2" n="Service Task•></serviceTask>

<sequenceFlow id= 'flow,'" sourceRef=

ame

•inclusivegatewayl• targetRef=.servicetask2"></sequenceFlow>

<sequenceFlow id=.flow5" sourceRef= winclusivegatewayl• targetRef=•servicetaskl •></sequenceFlow>

<endEvent id=•endevenr2" name=•End../endEvent>

<sequenceFlow id=•flow6" sourceRef= "servicetaski " targetRef="endevent2"></sequenceFlow>

<sequenceFlow id="flow7" sourceRef="servicetask2" targetRef="endevent2.></sequenceFlow>

I <association id=.association3. sourceRef=.inc1usivegateway1. targetRef="textannotation3../associa on>

</subprocess>

<sequenceFlow id=•flowl " sourceRef="starteventl " targetRef=•exclusivegatewayl.></sequenceFlow>

20 <sequenceFlow id= 'flow?" sourceRef=•exclusivegatewayl• targetRef= winclusivegatewayl•><IseguenceElou>

<parallellateway id= "parallelgaterayl. name="Parallel Gateway•></parallelsateway>

<sequenceFlow id=•flon8. sourceRef="exclusivegaterayl • targetRef=•parallelgatewayl •></sequenceFlow>

<sequenceFlow id=•flor9• sourceRef=noarallelgatewayl" targetRef=.callactivityl •></sequenceFlow>

<sequenceFlow id= •flow10. sourceRef=•parallelgaterayl• targetRef=•servicetask3.></sequenceFlow>

<boundaryEvent id= ''boundarytimerl" name=•Timer• attachedToRef= •eventsubprocessl" cancelActivity=•true.>

<timerEventDefinition./timereventOef inition>

</boundaryEvent>

<endEvent id=''endevent3. name= 'End.></endEvent>

<sequenceFlow id= •flowIl• sourceRef=•callactivi tyl • targetRef=•endevent3"></sequenceFlow>

<sequenceFlow id=•flon12. sourceRef=•servicetaskr targetRef=.endevent3.></sequenceFlow>

_ <textAnnotation id=•testannotationl.>

32. <text>Parallel

Gateway</text>

</textAnnotation>

<association id="associationl" sourceRef="parallelgatewayl• targetRef=•textannotationl" /associa on>

<textAnnotation id="textannotation2.>

32,8, <t ext >Exclusive

38 Gateway</text>
09 </reotannoT81- i nn>

Figure 6-2. Example BPMN 2.0 XML Notation

The Processing Sequence Control mechanism executes Processing Sequences based on
triggering events in the system. Example triggers include the following:

• Timer events - Processing Sequences may be executed at pre-configured times
or intervals (e.g., periodically checking for new waveform data to process).

• Service Invocation - Processing Sequences may be executed based on
invocation of the Processing Sequence Control mechanism's service interfaces
(via API or RESTful webservice). This type of trigger supports execution based
on operator commands and other events in the system; for example, for post-
processing of created/modified data entities (signal detections, event
hypotheses, events, etc.), processing stages, etc.

• Data Subscription Callbacks - The Processing Sequence Control mechanism
maintains subscriptions for select data updates in the system that require a
processing response (e.g., the creation of a new event). These subscriptions and
the corresponding Processing Sequence(s) are installed as configuration items
in the system. When the Processing Sequence Control mechanism receives
callbacks for configured data subscriptions, it invokes the associated Processing
Sequence(s).

The Activiti-based Processing Sequence Control mechanism supports a scalable,
distributed processing model for execution of processing sequences. As depicted in
Figure 6-3, tasks executed by the Processing Sequence Control mechanism may be

Error! Reference source not found.7 Page 81 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.
implemented as service invocations routed to control classes running in separate
processes, potentially on separate hosts within the system. This approach allows for
parallel execution of Activities within a Processing Sequence across multiple processes
and nodes.

Processing

Sequence

Definitions

(XML)

Timer-Based

Invocation

•
• I
•   /
• /

Message-based i‘ 
` Service /

Invocation

->
r

Control Class A

griControl Class B

Figure 6-3. Service-Based Processing Sequence Execution

Error! Reference source not found.7 Page 82 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.

Error! Reference source not found.7 Page 83 of 83



APPENDIX B. BPMN FOR PROCESSING SEQUENCE CONTROL ERROR! REFERENCE SOURCE NOT FOUND.

This is the last page of the document.

Sandia National Laboratories

Page 84 of 84


